mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Denis Kayshev <topenkoff@gmail.com> Co-authored-by: akhoroshev <arthoroshev@gmail.com> Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com> Update
306 lines
13 KiB
C++
306 lines
13 KiB
C++
/*
|
|
* Copyright (c) 2020-2024, NVIDIA CORPORATION. All rights reserved.
|
|
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/common/memoryUtils.h"
|
|
#include "tensorrt_llm/kernels/decodingCommon.h"
|
|
#include "tensorrt_llm/runtime/common.h"
|
|
#include <curand_kernel.h>
|
|
|
|
namespace tensorrt_llm::kernels
|
|
{
|
|
|
|
static constexpr runtime::SizeType32 TOP_K_MAX = 1024;
|
|
|
|
template <typename T>
|
|
struct TopKSamplingKernelParams
|
|
{
|
|
|
|
//! Input buffer [batchSize, maxTokensPerStep, vocabSizePadded].
|
|
//! Log probabilities of each token in the vocab. If logitsHasProbs is true,
|
|
//! logProbs must contain **just** probabilities instead of log probabilities.
|
|
T const* logProbs{nullptr};
|
|
//! input buffer [batchSize][tokensPerStep, vocabSizePadded] array of pointers to logits.
|
|
//! If nullptr, logProbs is used.
|
|
T const* const* logProbsPtrs{nullptr};
|
|
|
|
//! output buffer [maxBatchSize][maxSeqLen], optional. Contains pointers to rows
|
|
//! with output tokens per request. If nullptr, outputIds must be provided.
|
|
runtime::TokenIdType** outputIdsPtrs{nullptr};
|
|
//! output buffer [maxBatchSize, maxSeqLen], optional. Tensor to store output tokens.
|
|
//! Not used if outputIdsPtrs != nullptr
|
|
runtime::TokenIdType* outputIds{nullptr};
|
|
|
|
//! Required. Pointer to the workspace of size returned by getTopKWorkspaceSize.
|
|
//! Has to be pre-allocated by caller.
|
|
//! Function does not take ownership of the buffer
|
|
void* workspace{nullptr};
|
|
|
|
//! input buffer [maxBatchSize], optional. EOS token ids per request
|
|
runtime::TokenIdType const* endIds{nullptr};
|
|
|
|
//! input/output buffer [maxBatchSize], optional. If nullptr, seqLen is 0
|
|
//! Current sequence length of the request. Set up to, but excluding endId token.
|
|
runtime::SizeType32* sequenceLengths{nullptr};
|
|
//! input buffer[batchSize], optional. Indices of rows of data in memory pool.
|
|
//! Linear indexing (batchIdx) is used if nullptr.
|
|
runtime::SizeType32 const* batchSlots{nullptr};
|
|
//! input buffer [maxBatchSize], optional. Number of tokens per step for each request.
|
|
//! It is assumed that all requests have maxTokensPerStep tokens per step if nullptr.
|
|
runtime::SizeType32 const* tokensPerStep{nullptr};
|
|
|
|
//! input buffer [maxBatchSize], optional. If true, request exits early.
|
|
FinishedState const* finishedInput{nullptr};
|
|
//! output buffer [maxBatchSize], optional.
|
|
//! Set to true if sequence has finished (if finished || outputId == endId).
|
|
FinishedState* finishedOutput{nullptr};
|
|
//! input buffer [maxBatchSize]. Flags whether to skip decoding per request
|
|
bool const* skipDecode{nullptr};
|
|
|
|
//! input/output buffer [maxBatchSize], optional.
|
|
//! Cumulative log probability of selected tokens. Ignored if nullptr
|
|
float* cumLogProbs{nullptr};
|
|
//! output buffer
|
|
//! [maxBatchSize, maxTopK] when returnAllSelectedTokens, otherwise [maxSeqLen, maxBatchSize]
|
|
//! Log probs is the probability induced by the top-k sampling.
|
|
//! If normalizeLogProbs is true, we normalize the probability 'expLogit' of the selected token
|
|
//! by the probability 's_sum' of a set of top-k tokens, meaning the logProb is the probability
|
|
//! of the selected token, conditioned on the event that it is selected,
|
|
//! i.e., log_prob = log P(i | i is in top-k) = log(expLogit / s_sum).
|
|
//! Ignored if nullptr.
|
|
float* outputLogProbs{nullptr};
|
|
|
|
//! input buffer [maxBatchSize], optional. Initialized curand states.
|
|
//! If nullptr, 1 is always used.
|
|
curandState_t* curandState{nullptr};
|
|
//! input buffer [maxBatchSize]. K for topK sampling per request.
|
|
//! Supported K is in range [1; 1024]. Where K=1 is greedy search.
|
|
//! If nullptr maxTopK is used for all requests.
|
|
runtime::SizeType32 const* topKs{nullptr};
|
|
//! input buffer [maxBatchSize]. Probability for topP sampling per request.
|
|
//! Supported P is in range (0.0, 1.0]. If nullptr, topP is used for all requests
|
|
float const* topPs{nullptr};
|
|
//! maximum among all topKs K for topK sampling
|
|
runtime::SizeType32 maxTopK{TOP_K_MAX};
|
|
//! probability for topP sampling.
|
|
float maxTopP{1.0f};
|
|
|
|
runtime::SizeType32 batchSize{-1};
|
|
runtime::SizeType32 maxBatchSize{-1};
|
|
runtime::SizeType32 vocabSizePadded{-1};
|
|
runtime::SizeType32 maxTokensPerStep{-1};
|
|
runtime::SizeType32 maxSeqLen{-1};
|
|
|
|
//! when set to True outputLogProbs are normalized to TopK
|
|
bool normalizeLogProbs{false};
|
|
//! flag to highlight that logProbs contains probabilities
|
|
bool logitsHasProbs{false};
|
|
//! flag to return all selected TopK results
|
|
bool returnAllSelectedTokens{false};
|
|
//! flag to set strict TopP boundary.
|
|
//! If true, when randNum <=0.0f, the selection is completed, even if K draft tokens are not reached.
|
|
//! If false, when randNum <=0.0f, the selection will continue until it reaches K tokens.
|
|
bool strictTopPBoundary{true};
|
|
|
|
//! flag to return all selected TopK results per request.
|
|
bool const* returnAllSelectedTokensPerSlot{nullptr};
|
|
|
|
//! output buffer [maxBatchSize], optional.
|
|
//! Store the multinomial sampled target token id in TopK/TopP sampled tokens when returnAllSelectedTokens==True.
|
|
//! Only return when skipOutputIdCurrentStep != nullptr && skipOutputIdCurrentStep == False
|
|
runtime::TokenIdType* outputIdCurrentStep{nullptr};
|
|
//! input buffer [maxBatchSize]. Determine if multinomial sampling is required when returnAllSelectedTokens==True.
|
|
bool const* skipOutputIdCurrentStep{nullptr};
|
|
|
|
void checkParams() const
|
|
{
|
|
TLLM_CHECK(batchSize > 0);
|
|
TLLM_CHECK(maxBatchSize > 0);
|
|
TLLM_CHECK(maxBatchSize >= batchSize);
|
|
TLLM_CHECK(vocabSizePadded > 0);
|
|
TLLM_CHECK(maxTokensPerStep > 0);
|
|
|
|
TLLM_CHECK(logProbs || logProbsPtrs);
|
|
TLLM_CHECK(outputIds || outputIdsPtrs);
|
|
|
|
if (maxTokensPerStep > 1)
|
|
{
|
|
TLLM_CHECK(tokensPerStep);
|
|
}
|
|
|
|
if (outputIds)
|
|
{
|
|
TLLM_CHECK(maxSeqLen > 0);
|
|
}
|
|
|
|
TLLM_CHECK(workspace);
|
|
|
|
TLLM_CHECK(maxTokensPerStep != 1 || returnAllSelectedTokens || sequenceLengths);
|
|
TLLM_CHECK(maxTokensPerStep != 1 || returnAllSelectedTokens || endIds);
|
|
if (cumLogProbs != nullptr || outputLogProbs != nullptr)
|
|
{
|
|
TLLM_CHECK(maxTokensPerStep == 1);
|
|
if (cumLogProbs != nullptr)
|
|
{
|
|
TLLM_CHECK(!returnAllSelectedTokens);
|
|
}
|
|
}
|
|
|
|
TLLM_CHECK(((finishedOutput == nullptr) ^ (endIds == nullptr)) == 0);
|
|
|
|
TLLM_CHECK(0 < maxTopP && maxTopP <= 1.f);
|
|
TLLM_CHECK(0 <= maxTopK && maxTopK <= TOP_K_MAX);
|
|
TLLM_CHECK((skipOutputIdCurrentStep && outputIdCurrentStep && returnAllSelectedTokens)
|
|
|| (skipOutputIdCurrentStep == nullptr && outputIdCurrentStep == nullptr));
|
|
}
|
|
};
|
|
|
|
// clang-format off
|
|
//! \brief Given logProbs, performs top K **and** top P sampling at the same time. Fills sampled tokens to outputIds.
|
|
//! Computes sequenceLength, finished state, cumLogProbs inplace.
|
|
//! Sampling per request can be controlled using skipDecode, topPs and topKs parameters.
|
|
//! Function sets workspaceSize and exits early if workspace is nullptr.
|
|
//! If logits are Nan, we set output token to be the last in the vocabulary.
|
|
// clang-format on
|
|
template <typename T>
|
|
void invokeBatchTopKSampling(TopKSamplingKernelParams<T> const& params, cudaStream_t stream);
|
|
|
|
template <typename T>
|
|
[[nodiscard]] std::vector<size_t> getTopKWorkspaceSizes(runtime::SizeType32 batchSize,
|
|
runtime::SizeType32 maxTokensPerStep, runtime::SizeType32 maxTopK, runtime::SizeType32 vocabSizePadded)
|
|
{
|
|
runtime::SizeType32 constexpr maxBlockPerBeam = 8;
|
|
auto const tempLogProbsBufSize = sizeof(T) * batchSize * maxTokensPerStep * vocabSizePadded; // type T
|
|
auto const topKTmpIdsBufSize
|
|
= sizeof(runtime::SizeType32) * batchSize * maxTokensPerStep * maxTopK * maxBlockPerBeam; // type int
|
|
auto const topKTmpValBufSize = sizeof(T) * batchSize * maxTokensPerStep * maxTopK * maxBlockPerBeam; // type T
|
|
|
|
return {tempLogProbsBufSize, topKTmpIdsBufSize, topKTmpValBufSize};
|
|
}
|
|
|
|
[[nodiscard]] inline std::vector<size_t> getTopKInitWorkspaceSizes(runtime::SizeType32 batchSize)
|
|
{
|
|
auto const tempTopKsBufSize = batchSize * sizeof(runtime::SizeType32);
|
|
auto const tempTopPsBufSize = batchSize * sizeof(float);
|
|
|
|
return {tempTopKsBufSize, tempTopPsBufSize};
|
|
}
|
|
|
|
//! \brief Returns workspace size in bytes needed for sampling TopK computation
|
|
//! \param batchSize batch size
|
|
//! \param maxTokensPerStep maximum number of tokens per computed per step
|
|
//! \param maxTopK maximum among all topKs K for topK sampling
|
|
//! \param vocabSizePadded size of padded vocab
|
|
template <typename T>
|
|
[[nodiscard]] size_t getTopKWorkspaceSize(runtime::SizeType32 batchSize, runtime::SizeType32 maxTokensPerStep,
|
|
runtime::SizeType32 maxTopK, runtime::SizeType32 vocabSizePadded)
|
|
{
|
|
auto const workspaceSizes = getTopKWorkspaceSizes<T>(batchSize, maxTokensPerStep, maxTopK, vocabSizePadded);
|
|
auto const initWorkspaceSizes = getTopKInitWorkspaceSizes(batchSize);
|
|
return std::max(tensorrt_llm::common::calcAlignedSize(workspaceSizes, 256),
|
|
tensorrt_llm::common::calcAlignedSize(initWorkspaceSizes, 256));
|
|
}
|
|
|
|
void invokeSetupTopKRuntimeArgs(runtime::SizeType32 batchSize, ScatterDecodingParamEntry<runtime::SizeType32> topK,
|
|
ScatterDecodingParamEntry<float> topP, bool* skipDecodePtr, runtime::SizeType32 const* batchSlotsPtr, bool onDevice,
|
|
cudaStream_t stream = nullptr);
|
|
|
|
void invokeSetupTopKTopPRuntimeArgs(runtime::SizeType32 batchSize, ScatterDecodingParamEntry<runtime::SizeType32> topK,
|
|
ScatterDecodingParamEntry<float> topP, bool* skipDecodeTopKPtr, bool* skipDecodeTopPPtr,
|
|
runtime::SizeType32 const* batchSlotsPtr, bool onDevice, cudaStream_t stream = nullptr);
|
|
|
|
inline bool clampTopP(float& topP)
|
|
{
|
|
if (topP < 0.f || topP > 1.0f)
|
|
{
|
|
TLLM_LOG_WARNING("TopP (%f) is out of range ([0.0, 1.0f]). Clip to closest number.", topP);
|
|
topP = std::clamp(topP, 0.f, 1.f);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
inline bool clampTopK(runtime::SizeType32& topK)
|
|
{
|
|
if (topK < 0 || topK > TOP_K_MAX)
|
|
{
|
|
TLLM_LOG_WARNING(
|
|
"TopK (%d) is larger than max supported number (%d). Clip to max supported number.", topK, TOP_K_MAX);
|
|
topK = std::clamp(topK, 0, TOP_K_MAX);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
inline bool regularizeTopKTopP(runtime::SizeType32& topK, float& topP)
|
|
{
|
|
bool modified = false;
|
|
if (topK == 0 && topP == 0.0f)
|
|
{
|
|
// TensorRT-LLM's topp implementation does not support topp = 0.0f, but it
|
|
// equivalent to greedy search. So, we set the topk = 1 as an alternative
|
|
// solution.
|
|
topK = 1;
|
|
modified = true;
|
|
}
|
|
if (topK > 0 && topP == 0.0f)
|
|
{
|
|
// This case corresponds to the old topk sampling, which is equivalent to
|
|
// the old topk_topp sampling with topp=1.0f. TopKSamplingLayer and
|
|
// TopKTopPSamplingLayer are now merged by TopKSamplingLayer. Thus, we
|
|
// replace the case topk>0 and topp=0.0f by topk>0 and topp=1.0f for the
|
|
// compatibility.
|
|
topP = 1.0f;
|
|
modified = true;
|
|
}
|
|
|
|
return modified;
|
|
}
|
|
|
|
__device__ __host__ inline void setupTopKTopPRuntimeArgOne(runtime::SizeType32 batchIndex,
|
|
ScatterDecodingParamEntry<runtime::SizeType32> topK, ScatterDecodingParamEntry<float> topP,
|
|
runtime::SizeType32 const* batchSlots, bool* skipDecodeTopK, bool* skipDecodeTopP, float* initialTopPBuf)
|
|
{
|
|
auto const batchSlot = batchSlots[batchIndex];
|
|
auto const k = topK.mVector == nullptr ? topK.mScalar : topK.mVector[batchIndex];
|
|
auto const p = topP.mVector == nullptr ? topP.mScalar : topP.mVector[batchIndex];
|
|
if (topK.mTarget != nullptr)
|
|
{
|
|
topK.mTarget[batchSlot] = k;
|
|
}
|
|
if (topP.mTarget != nullptr)
|
|
{
|
|
topP.mTarget[batchSlot] = p;
|
|
}
|
|
if (skipDecodeTopK != nullptr)
|
|
{
|
|
skipDecodeTopK[batchSlot] = k == 0;
|
|
}
|
|
if (skipDecodeTopP != nullptr)
|
|
{
|
|
skipDecodeTopP[batchSlot] = k != 0;
|
|
}
|
|
if (initialTopPBuf != nullptr)
|
|
{
|
|
initialTopPBuf[batchSlot] = p;
|
|
}
|
|
}
|
|
|
|
} // namespace tensorrt_llm::kernels
|