TensorRT-LLMs/examples/bloom/hf_bloom_convert.py
Kaiyu Xie 587d063e6d
Update TensorRT-LLM (#506)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2023-11-30 16:46:22 +08:00

370 lines
15 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

'''
Convert huggingface Bloom model. Use https://huggingface.co/bigscience/bloom as demo.
'''
import argparse
import configparser
import dataclasses
import os
import platform
from pathlib import Path
import torch
import torch.multiprocessing as multiprocessing
from convert import split_and_save_weight
from smoothquant import capture_activation_range, smooth_gemm
from tqdm import tqdm
from transformers import BloomForCausalLM, BloomTokenizerFast
from transformers.models.bloom.modeling_bloom import BloomBlock
from tensorrt_llm._utils import str_dtype_to_torch, torch_to_numpy
@dataclasses.dataclass(frozen=True)
class ProgArgs:
out_dir: str
in_file: str
tensor_parallelism: int = 1
processes: int = 4
calibrate_kv_cache: bool = False
smoothquant: float = None
model: str = "bloom"
storage_type: str = "fp32"
dataset_cache_dir: str = None
load_model_on_cpu: bool = False
convert_model_on_cpu: bool = False
@staticmethod
def parse(args=None) -> 'ProgArgs':
parser = argparse.ArgumentParser(
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('--out-dir',
'-o',
type=str,
help='file name of output directory',
required=True)
parser.add_argument('--in-file',
'-i',
type=str,
help='file name of input checkpoint file',
required=True)
parser.add_argument('--tensor-parallelism',
'-tp',
type=int,
help='Requested tensor parallelism for inference',
default=1)
parser.add_argument(
"--processes",
"-p",
type=int,
help=
"How many processes to spawn for conversion (default: 4). Set it to a lower value to reduce RAM usage.",
default=4)
parser.add_argument(
"--calibrate-kv-cache",
"-kv",
action="store_true",
help=
"Generate scaling factors for KV cache. Used for storing KV cache in int8."
)
parser.add_argument(
"--smoothquant",
"-sq",
type=float,
default=None,
help="Set the α parameter (see https://arxiv.org/pdf/2211.10438.pdf)"
" to Smoothquant the model, and output int8 weights."
" A good first try is 0.5. Must be in [0, 1]")
parser.add_argument(
"--model",
default="bloom",
type=str,
help="Specify Bloom variants to convert checkpoints correctly",
choices=["bloom"])
parser.add_argument("--storage-type",
"-t",
type=str,
default="float32",
choices=["float32", "float16", "bfloat16"])
parser.add_argument("--dataset-cache-dir",
type=str,
default=None,
help="cache dir to load the hugging face dataset")
parser.add_argument("--load-model-on-cpu", action="store_true")
parser.add_argument("--convert-model-on-cpu", action="store_true")
return ProgArgs(**vars(parser.parse_args(args)))
def reorder_torch_qkv_weight_or_bias(v, model, is_bias=False):
""" Reorder the qkv weight.
Note that the shape of the fused QKV weights in HF is different from the
shape that TRT-LLM requires.
HF: (num_heads x 3 x head_dim, hidden_size)
TRT-LLM: (3 x num_heads x head_dim, hidden_size)
This is unlike to the other models in HF e.g. GPT where they have the
same shape with TRT-LLM, i.e., (3 x num_heads x head_dim, hidden_size). We reshape the qkv
weight: (3 x num_heads x head_dim, hidden).
bias : (3 x num_heads x head_dim).
"""
n_head = model.transformer.num_heads
hidden_size = model.transformer.embed_dim
head_dim = hidden_size // n_head
# (3 x hidden, ...) view as (num_heads, 3, head_dim, ...)
v = v.reshape(n_head, 3, head_dim, -1)
# permute to (3, num_heads, head_dim, ...)
v = v.permute((1, 0, 2, 3))
# final shape: weight=(3 x hidden, hidden) or bias=(3 x hidden)
if is_bias:
return v.reshape(3 * hidden_size)
return v.reshape(3 * hidden_size, hidden_size)
@torch.no_grad()
def smooth_bloom_model(model, scales, alpha, bloom_qkv_param, bloom_smoother):
# Smooth the activation and weights with smoother = $\diag{s}$
for name, module in model.named_modules():
if not isinstance(module, BloomBlock):
continue
# reorder qkv weight/bias and scales
param = module.self_attention.query_key_value.weight
param = reorder_torch_qkv_weight_or_bias(param, model, is_bias=False)
layer_name = name + ".self_attention.query_key_value"
act_range_qkv = scales.get(layer_name)
# (n_head x 3 x head_dim) -> (3 x n_head x head_dim)
act_range_qkv['w'] = reorder_torch_qkv_weight_or_bias(
act_range_qkv['w'], model, is_bias=True)
act_range_qkv['y'] = reorder_torch_qkv_weight_or_bias(
act_range_qkv['y'], model, is_bias=True)
scales[layer_name] = act_range_qkv
# qkv_proj
smoother = smooth_gemm(param, scales[layer_name]["x"],
module.input_layernorm.weight,
module.input_layernorm.bias, alpha)
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
scales[layer_name]["w"] = param.abs().max(dim=1)[0]
bloom_qkv_param[layer_name] = param
# dense
# enabled for better accuracy with perf overhead of quantiztion
layer_name = name + ".self_attention.dense"
smoother = smooth_gemm(module.self_attention.dense.weight,
scales[layer_name]["x"], None, None, alpha)
bloom_smoother[layer_name] = smoother
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
scales[layer_name]["w"] = module.self_attention.dense.weight.abs().max(
dim=1)[0]
# fc1
layer_name = name + ".mlp.dense_h_to_4h"
smoother = smooth_gemm(module.mlp.dense_h_to_4h.weight,
scales[layer_name]["x"],
module.post_attention_layernorm.weight,
module.post_attention_layernorm.bias, alpha)
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
scales[layer_name]["w"] = module.mlp.dense_h_to_4h.weight.abs().max(
dim=1)[0]
# fc2
# enabled for better accuracy with perf overhead of quantiztion
layer_name = name + ".mlp.dense_4h_to_h"
smoother = smooth_gemm(module.mlp.dense_4h_to_h.weight,
scales[layer_name]["x"], None, None, alpha)
bloom_smoother[layer_name] = smoother
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
scales[layer_name]["w"] = module.mlp.dense_4h_to_h.weight.abs().max(
dim=1)[0]
# Bloom uses nn.Linear for these following ops whose weight matrix is transposed compared to transformer.Conv1D
def transpose_weights(hf_name, param):
weight_to_transpose = [
"self_attention.query_key_value", "self_attention.dense",
"mlp.dense_h_to_4h", "mlp.dense_4h_to_h"
]
if any([k in hf_name for k in weight_to_transpose]):
if len(param.shape) == 2:
param = param.transpose(0, 1)
return param
def bloom_to_trt_llm_name(orig_name):
global_weights = {
"transformer.word_embeddings.weight": "model.wpe",
"transformer.word_embeddings_layernorm.bias":
"model.word_embeddings_layernorm.bias",
"transformer.word_embeddings_layernorm.weight":
"model.word_embeddings_layernorm.weight",
"transformer.ln_f.bias": "model.final_layernorm.bias",
"transformer.ln_f.weight": "model.final_layernorm.weight",
"lm_head.weight": "model.lm_head.weight"
}
if orig_name in global_weights:
return global_weights[orig_name]
_, _, layer_id, *weight_name = orig_name.split(".")
layer_id = int(layer_id)
weight_name = "transformer." + ".".join(weight_name)
per_layer_weights = {
"transformer.input_layernorm.bias": "input_layernorm.bias",
"transformer.input_layernorm.weight": "input_layernorm.weight",
"transformer.self_attention.query_key_value.bias":
"attention.query_key_value.bias",
"transformer.self_attention.query_key_value.weight":
"attention.query_key_value.weight",
"transformer.self_attention.dense.bias": "attention.dense.bias",
"transformer.self_attention.dense.weight": "attention.dense.weight",
"transformer.post_attention_layernorm.bias":
"post_attention_layernorm.bias",
"transformer.post_attention_layernorm.weight":
"post_attention_layernorm.weight",
"transformer.mlp.dense_h_to_4h.bias": "mlp.dense_h_to_4h.bias",
"transformer.mlp.dense_h_to_4h.weight": "mlp.dense_h_to_4h.weight",
"transformer.mlp.dense_4h_to_h.bias": "mlp.dense_4h_to_h.bias",
"transformer.mlp.dense_4h_to_h.weight": "mlp.dense_4h_to_h.weight",
}
return f"layers.{layer_id}.{per_layer_weights[weight_name]}"
@torch.no_grad()
def hf_bloom_converter(args: ProgArgs):
infer_tp = args.tensor_parallelism
multi_query_mode = True if args.model in ["santacoder", "starcoder"
] else False
saved_dir = Path(args.out_dir) / f"{infer_tp}-gpu"
saved_dir.mkdir(parents=True, exist_ok=True)
# load position_embedding from rank 0
model = BloomForCausalLM.from_pretrained(args.in_file,
torch_dtype="auto",
device_map="auto",
trust_remote_code=True)
if args.load_model_on_cpu:
model = model.cpu()
torch.cuda.empty_cache()
act_range = {}
bloom_qkv_param = {}
# smoother for inputs of self_attention.dense and mlp.dense_4h_to_h
bloom_smoother = {}
if args.smoothquant is not None or args.calibrate_kv_cache:
os.environ["TOKENIZERS_PARALLELISM"] = os.environ.get(
"TOKENIZERS_PARALLELISM", "false")
from datasets import load_dataset
dataset = load_dataset("lambada",
split="validation",
cache_dir=args.dataset_cache_dir)
act_range = capture_activation_range(
model, BloomTokenizerFast.from_pretrained(args.in_file), dataset)
if args.smoothquant is not None:
smooth_bloom_model(model, act_range, args.smoothquant,
bloom_qkv_param, bloom_smoother)
config = configparser.ConfigParser()
config["bloom"] = {}
for key in vars(args):
config["bloom"][key] = f"{vars(args)[key]}"
for k, v in vars(model.config).items():
config["bloom"][k] = f"{v}"
config["bloom"]["storage_dtype"] = args.storage_type
config["bloom"]["multi_query_mode"] = str(multi_query_mode)
with open(saved_dir / "config.ini", 'w') as configfile:
config.write(configfile)
storage_type = str_dtype_to_torch(args.storage_type)
global_trt_llm_weights = [
"model.wpe", "model.word_embeddings_layernorm.bias",
"model.word_embeddings_layernorm.weight", "model.final_layernorm.bias",
"model.final_layernorm.weight", "model.lm_head.weight"
]
int8_outputs = None
if args.calibrate_kv_cache:
int8_outputs = "kv_cache_only"
if args.smoothquant is not None:
int8_outputs = "all"
starmap_args = []
for name, param in model.named_parameters():
if "weight" not in name and "bias" not in name:
continue
trt_llm_name = bloom_to_trt_llm_name(name)
if args.convert_model_on_cpu:
param = param.cpu()
if name.replace(".weight", "") in bloom_smoother.keys():
smoother = bloom_smoother[name.replace(".weight", "")]
starmap_args.append(
(0, saved_dir, infer_tp,
f"{trt_llm_name}.smoother".replace(".weight", ""),
smoother.to(torch.float32), torch.float32, None, {
"int8_outputs": int8_outputs,
"multi_query_mode": multi_query_mode,
"local_dim": None,
}))
# reorder qkv weight and bias
if "attention.query_key_value.weight" in trt_llm_name:
if args.smoothquant is not None:
param = bloom_qkv_param.get(name.replace(".weight", ""))
else:
param = reorder_torch_qkv_weight_or_bias(param,
model,
is_bias=False)
if "attention.query_key_value.bias" in trt_llm_name:
param = reorder_torch_qkv_weight_or_bias(param, model, is_bias=True)
param = transpose_weights(name, param)
if trt_llm_name in global_trt_llm_weights:
torch_to_numpy(param.to(storage_type).cpu()).tofile(
saved_dir / f"{trt_llm_name}.bin")
else:
# Needed by QKV projection weight split. With multi_query_mode one does not simply take
# out_dim and divide it by 3 to get local_dim because out_dim = local_dim + 2 * head_size
local_dim = model.transformer.h[
0].attn.embed_dim if multi_query_mode else None
starmap_args.append(
(0, saved_dir, infer_tp, trt_llm_name, param.to(storage_type),
storage_type, act_range.get(name.replace(".weight", "")), {
"int8_outputs": int8_outputs,
"multi_query_mode": multi_query_mode,
"local_dim": local_dim
}))
starmap_args = tqdm(starmap_args, desc="saving weights")
if args.processes > 1:
with multiprocessing.Pool(args.processes) as pool:
pool.starmap(split_and_save_weight, starmap_args)
else:
# simpler for debug situations
for starmap_arg in starmap_args:
split_and_save_weight(*starmap_arg)
def run_conversion(args: ProgArgs):
if args.processes > 1 and platform.system() == "Windows":
print(
"Resetting processes to 1 because multi-process on Windows is not implemented."
)
args = dataclasses.replace(args, processes=1)
print("\n=============== Arguments ===============")
for key, value in vars(args).items():
print(f"{key}: {value}")
print("========================================")
hf_bloom_converter(args)
if __name__ == "__main__":
torch.multiprocessing.set_start_method("spawn")
run_conversion(ProgArgs.parse())