mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Starrick Liu <73152103+StarrickLiu@users.noreply.github.com>
88 lines
3.4 KiB
Python
88 lines
3.4 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Optional, Union
|
|
|
|
import transformers
|
|
|
|
from ...mapping import Mapping
|
|
from ..convert_utils import infer_dtype
|
|
from ..modeling_utils import PretrainedConfig, QuantConfig
|
|
|
|
|
|
class CohereConfig(PretrainedConfig):
|
|
|
|
def __init__(self,
|
|
*,
|
|
output_multiplier_scale: float = 0.0625,
|
|
rotary_base: float = 10000.0,
|
|
attn_bias: bool = False,
|
|
**kwargs):
|
|
self.output_multiplier_scale = output_multiplier_scale
|
|
self.rotary_base = rotary_base
|
|
self.attn_bias = attn_bias
|
|
super().__init__(**kwargs)
|
|
|
|
def to_dict(self):
|
|
output = super().to_dict()
|
|
# Serialize the fields added in CohereConfig
|
|
output['output_multiplier_scale'] = self.output_multiplier_scale
|
|
output['rotary_base'] = self.rotary_base
|
|
output['attn_bias'] = self.attn_bias
|
|
return output
|
|
|
|
@classmethod
|
|
def from_hugging_face(
|
|
cls,
|
|
hf_config_or_dir: Union[str, 'transformers.PretrainedConfig'],
|
|
dtype: str = 'auto',
|
|
mapping: Optional[Mapping] = None,
|
|
quant_config: Optional[QuantConfig] = None,
|
|
**kwargs):
|
|
if isinstance(hf_config_or_dir, transformers.PretrainedConfig):
|
|
hf_config = hf_config_or_dir
|
|
else:
|
|
hf_config = transformers.AutoConfig.from_pretrained(
|
|
hf_config_or_dir, trust_remote_code=True)
|
|
|
|
head_size = hf_config.hidden_size // hf_config.num_attention_heads
|
|
|
|
dtype = infer_dtype(dtype, getattr(hf_config, 'torch_dtype', None))
|
|
|
|
if hf_config.tie_word_embeddings:
|
|
kwargs['use_parallel_embedding'] = True
|
|
kwargs['embedding_sharding_dim'] = 0
|
|
|
|
return CohereConfig(
|
|
architecture=hf_config.architectures[0],
|
|
dtype=dtype,
|
|
num_hidden_layers=hf_config.num_hidden_layers,
|
|
num_attention_heads=hf_config.num_attention_heads,
|
|
hidden_size=hf_config.hidden_size,
|
|
intermediate_size=hf_config.intermediate_size,
|
|
num_key_value_heads=hf_config.num_key_value_heads,
|
|
head_size=head_size,
|
|
vocab_size=hf_config.vocab_size,
|
|
position_embedding_type='rope_gptj', # different rope type
|
|
max_position_embeddings=hf_config.max_position_embeddings,
|
|
hidden_act=hf_config.hidden_act,
|
|
norm_epsilon=hf_config.layer_norm_eps,
|
|
output_multiplier_scale=hf_config.logit_scale,
|
|
rotary_base=hf_config.rope_theta,
|
|
attn_bias=hf_config.attention_bias,
|
|
qk_layernorm=hf_config.use_qk_norm,
|
|
mapping=mapping,
|
|
quantization=quant_config,
|
|
**kwargs)
|