mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
329 lines
23 KiB
HTML
329 lines
23 KiB
HTML
|
|
|
|
<!DOCTYPE html>
|
|
<html class="writer-html5" lang="en" data-content_root="../">
|
|
<head>
|
|
<meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1" />
|
|
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
|
<title>API Introduction — tensorrt_llm documentation</title>
|
|
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=80d5e7a1" />
|
|
<link rel="stylesheet" type="text/css" href="../_static/css/theme.css?v=e59714d7" />
|
|
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
|
|
|
|
|
|
<script src="../_static/jquery.js?v=5d32c60e"></script>
|
|
<script src="../_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
|
|
<script src="../_static/documentation_options.js?v=5929fcd5"></script>
|
|
<script src="../_static/doctools.js?v=888ff710"></script>
|
|
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
|
|
<script src="../_static/clipboard.min.js?v=a7894cd8"></script>
|
|
<script src="../_static/copybutton.js?v=65e89d2a"></script>
|
|
<script src="../_static/js/theme.js"></script>
|
|
<link rel="index" title="Index" href="../genindex.html" />
|
|
<link rel="search" title="Search" href="../search.html" />
|
|
<link rel="next" title="API Reference" href="reference.html" />
|
|
<link rel="prev" title="Installing on Grace Hopper" href="../installation/grace-hopper.html" />
|
|
</head>
|
|
|
|
<body class="wy-body-for-nav">
|
|
<div class="wy-grid-for-nav">
|
|
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
|
<div class="wy-side-scroll">
|
|
<div class="wy-side-nav-search" >
|
|
|
|
|
|
|
|
<a href="../index.html" class="icon icon-home">
|
|
tensorrt_llm
|
|
</a>
|
|
<div role="search">
|
|
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
|
|
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
|
|
<input type="hidden" name="check_keywords" value="yes" />
|
|
<input type="hidden" name="area" value="default" />
|
|
</form>
|
|
</div>
|
|
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
|
|
<p class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../overview.html">Overview</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../quick-start-guide.html">Quick Start Guide</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../key-features.html">Key Features</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../release-notes.html">Release Notes</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Installation</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../installation/linux.html">Installing on Linux</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../installation/windows.html">Installing on Windows</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../installation/build-from-source-windows.html">Building from Source Code on Windows</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../installation/grace-hopper.html">Installing on Grace Hopper</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">LLM API</span></p>
|
|
<ul class="current">
|
|
<li class="toctree-l1 current"><a class="current reference internal" href="#">API Introduction</a><ul>
|
|
<li class="toctree-l2"><a class="reference internal" href="#supported-models">Supported Models</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="#model-preparation">Model Preparation</a><ul>
|
|
<li class="toctree-l3"><a class="reference internal" href="#hugging-face-hub">Hugging Face Hub</a></li>
|
|
<li class="toctree-l3"><a class="reference internal" href="#local-hugging-face-models">Local Hugging Face Models</a></li>
|
|
<li class="toctree-l3"><a class="reference internal" href="#local-tensorrt-llm-engine">Local TensorRT-LLM Engine</a></li>
|
|
</ul>
|
|
</li>
|
|
<li class="toctree-l2"><a class="reference internal" href="#tips-and-troubleshooting">Tips and Troubleshooting</a></li>
|
|
</ul>
|
|
</li>
|
|
<li class="toctree-l1"><a class="reference internal" href="reference.html">API Reference</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">LLM API Examples</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../llm-api-examples/index.html">LLM Examples Introduction</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../llm-api-examples/customization.html">Common Customizations</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../llm-api-examples/llm_api_examples.html">Examples</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Model Definition API</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.layers.html">Layers</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.functional.html">Functionals</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.models.html">Models</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.plugin.html">Plugin</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.quantization.html">Quantization</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.runtime.html">Runtime</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">C++ API</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../_cpp_gen/executor.html">Executor</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../_cpp_gen/runtime.html">Runtime</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Command-Line Reference</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../commands/trtllm-build.html">trtllm-build</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../commands/trtllm-serve.html">trtllm-serve</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Architecture</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../architecture/overview.html">TensorRT-LLM Architecture</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../architecture/core-concepts.html">Model Definition</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../architecture/core-concepts.html#compilation">Compilation</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../architecture/core-concepts.html#runtime">Runtime</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../architecture/core-concepts.html#multi-gpu-and-multi-node-support">Multi-GPU and Multi-Node Support</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../architecture/checkpoint.html">TensorRT-LLM Checkpoint</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../architecture/workflow.html">TensorRT-LLM Build Workflow</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../architecture/add-model.html">Adding a Model</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Advanced</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../advanced/gpt-attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../advanced/gpt-runtime.html">C++ GPT Runtime</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../advanced/executor.html">Executor API</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../advanced/graph-rewriting.html">Graph Rewriting Module</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../advanced/inference-request.html">Inference Request</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../advanced/inference-request.html#responses">Responses</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../advanced/lora.html">Run gpt-2b + LoRA using GptManager / cpp runtime</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../advanced/expert-parallelism.html">Expert Parallelism in TensorRT-LLM</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../advanced/kv-cache-reuse.html">KV cache reuse</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../advanced/speculative-decoding.html">Speculative Sampling</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Performance</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../performance/perf-overview.html">Overview</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../performance/perf-benchmarking.html">Benchmarking</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../performance/perf-best-practices.html">Best Practices</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../performance/perf-analysis.html">Performance Analysis</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Reference</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../reference/troubleshooting.html">Troubleshooting</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../reference/support-matrix.html">Support Matrix</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../reference/precision.html">Numerical Precision</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../reference/memory.html">Memory Usage of TensorRT-LLM</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Blogs</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT-LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT-LLM</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../blogs/Falcon180B-H200.html">Falcon-180B on a single H200 GPU with INT4 AWQ, and 6.7x faster Llama-70B over A100</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../blogs/quantization-in-TRT-LLM.html">Speed up inference with SOTA quantization techniques in TRT-LLM</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
|
|
</ul>
|
|
|
|
</div>
|
|
</div>
|
|
</nav>
|
|
|
|
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
|
|
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
|
|
<a href="../index.html">tensorrt_llm</a>
|
|
</nav>
|
|
|
|
<div class="wy-nav-content">
|
|
<div class="rst-content">
|
|
<div role="navigation" aria-label="Page navigation">
|
|
<ul class="wy-breadcrumbs">
|
|
<li><a href="../index.html" class="icon icon-home" aria-label="Home"></a></li>
|
|
<li class="breadcrumb-item active">API Introduction</li>
|
|
<li class="wy-breadcrumbs-aside">
|
|
<a href="../_sources/llm-api/index.md.txt" rel="nofollow"> View page source</a>
|
|
</li>
|
|
</ul>
|
|
<hr/>
|
|
</div>
|
|
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
|
|
<div itemprop="articleBody">
|
|
|
|
<section id="api-introduction">
|
|
<h1>API Introduction<a class="headerlink" href="#api-introduction" title="Link to this heading"></a></h1>
|
|
<p>The LLM API is a high-level Python API and designed for LLM workflows.
|
|
This API is under development and might have breaking changes in the future.</p>
|
|
<section id="supported-models">
|
|
<h2>Supported Models<a class="headerlink" href="#supported-models" title="Link to this heading"></a></h2>
|
|
<ul class="simple">
|
|
<li><p>Llama (including variants Mistral, Mixtral, InternLM)</p></li>
|
|
<li><p>GPT (including variants Starcoder-1/2, Santacoder)</p></li>
|
|
<li><p>Gemma-1/2</p></li>
|
|
<li><p>Phi-1/2/3</p></li>
|
|
<li><p>ChatGLM (including variants glm-10b, chatglm, chatglm2, chatglm3, glm4)</p></li>
|
|
<li><p>QWen-1/1.5/2</p></li>
|
|
<li><p>Falcon</p></li>
|
|
<li><p>Baichuan-1/2</p></li>
|
|
<li><p>GPT-J</p></li>
|
|
<li><p>Mamba-1/2</p></li>
|
|
</ul>
|
|
</section>
|
|
<section id="model-preparation">
|
|
<h2>Model Preparation<a class="headerlink" href="#model-preparation" title="Link to this heading"></a></h2>
|
|
<p>The <code class="docutils literal notranslate"><span class="pre">LLM</span></code> class supports input from any of following:</p>
|
|
<ol class="arabic simple">
|
|
<li><p><strong>Hugging Face Hub</strong>: Triggers a download from the Hugging Face model hub, such as <code class="docutils literal notranslate"><span class="pre">TinyLlama/TinyLlama-1.1B-Chat-v1.0</span></code>.</p></li>
|
|
<li><p><strong>Local Hugging Face models</strong>: Uses a locally stored Hugging Face model.</p></li>
|
|
<li><p><strong>Local TensorRT-LLM engine</strong>: Built by <code class="docutils literal notranslate"><span class="pre">trtllm-build</span></code> tool or saved by the Python LLM API.</p></li>
|
|
</ol>
|
|
<p>You can use any of these formats interchangeably with the <code class="docutils literal notranslate"><span class="pre">LLM(model=<any-model-path>)</span></code> constructor.
|
|
The following sections describe how to use these different formats for the LLM API.</p>
|
|
<section id="hugging-face-hub">
|
|
<h3>Hugging Face Hub<a class="headerlink" href="#hugging-face-hub" title="Link to this heading"></a></h3>
|
|
<p>Using the Hugging Face Hub is as simple as specifying the repo name in the LLM constructor:</p>
|
|
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="n">model</span><span class="o">=</span><span class="s2">"TinyLlama/TinyLlama-1.1B-Chat-v1.0"</span><span class="p">)</span>
|
|
</pre></div>
|
|
</div>
|
|
</section>
|
|
<section id="local-hugging-face-models">
|
|
<h3>Local Hugging Face Models<a class="headerlink" href="#local-hugging-face-models" title="Link to this heading"></a></h3>
|
|
<p>Given the popularity of the Hugging Face model hub, the API supports the Hugging Face format as one of the starting points.
|
|
To use the API with Llama 3.1 models, download the model from the <a class="reference external" href="https://huggingface.co/meta-llama/Meta-Llama-3.1-8B">Meta Llama 3.1 8B model page</a> by using the following command:</p>
|
|
<div class="highlight-console notranslate"><div class="highlight"><pre><span></span><span class="go">git lfs install</span>
|
|
<span class="go">git clone https://huggingface.co/meta-llama/Meta-Llama-3.1-8B</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>After the model download is complete, you can load the model:</p>
|
|
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="n">model</span><span class="o">=<</span><span class="n">path_to_meta_llama_from_hf</span><span class="o">></span><span class="p">)</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>Using this model is subject to a <a class="reference external" href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/">particular</a> license. Agree to the terms and <a class="reference external" href="https://huggingface.co/meta-llama/Meta-Llama-3-8B?clone=true">authenticate with Hugging Face</a> to begin the download.</p>
|
|
</section>
|
|
<section id="local-tensorrt-llm-engine">
|
|
<h3>Local TensorRT-LLM Engine<a class="headerlink" href="#local-tensorrt-llm-engine" title="Link to this heading"></a></h3>
|
|
<p>The LLM API can use a TensorRT-LLM engine.
|
|
There are two ways to build a TensorRT-LLM engine:</p>
|
|
<ol class="arabic">
|
|
<li><p>You can build the TensorRT-LLM engine from the Hugging Face model directly with the <a class="reference internal" href="../commands/trtllm-build.html"><span class="std std-doc"><code class="docutils literal notranslate"><span class="pre">trtllm-build</span></code></span></a> tool and then save the engine to disk for later use.
|
|
Refer to the <a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama">README</a> in the <a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama"><code class="docutils literal notranslate"><span class="pre">examples/llama</span></code></a> repository on GitHub.</p>
|
|
<p>After the engine building is finished, you can load the model:</p>
|
|
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="n">model</span><span class="o">=<</span><span class="n">path_to_trt_engine</span><span class="o">></span><span class="p">)</span>
|
|
</pre></div>
|
|
</div>
|
|
</li>
|
|
<li><p>Alternatively, you can use an <code class="docutils literal notranslate"><span class="pre">LLM</span></code> instance to create the engine and persist to local disk:</p>
|
|
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="o"><</span><span class="n">model</span><span class="o">-</span><span class="n">path</span><span class="o">></span><span class="p">)</span>
|
|
|
|
<span class="c1"># Save engine to local disk</span>
|
|
<span class="n">llm</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="o"><</span><span class="n">engine</span><span class="o">-</span><span class="nb">dir</span><span class="o">></span><span class="p">)</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>The engine can be loaded using the <code class="docutils literal notranslate"><span class="pre">model</span></code> argument as shown in the first approach.</p>
|
|
</li>
|
|
</ol>
|
|
</section>
|
|
</section>
|
|
<section id="tips-and-troubleshooting">
|
|
<h2>Tips and Troubleshooting<a class="headerlink" href="#tips-and-troubleshooting" title="Link to this heading"></a></h2>
|
|
<p>The following tips typically assist new LLM API users who are familiar with other APIs that are part of TensorRT-LLM:</p>
|
|
<ul>
|
|
<li><p>RuntimeError: only rank 0 can start multi-node session, got 1</p>
|
|
<p>There is no need to add an <code class="docutils literal notranslate"><span class="pre">mpirun</span></code> prefix for launching single node multi-GPU inference with the LLM API.</p>
|
|
<p>For example, you can run <code class="docutils literal notranslate"><span class="pre">python</span> <span class="pre">llm_inference_distributed.py</span></code> to perform multi-GPU on a single node.</p>
|
|
</li>
|
|
<li><p>Hang issue on Slurm Node</p>
|
|
<p>If you experience a hang or other issue on a node managed with Slurm, add prefix <code class="docutils literal notranslate"><span class="pre">mpirun</span> <span class="pre">-n</span> <span class="pre">1</span> <span class="pre">--oversubscribe</span> <span class="pre">--allow-run-as-root</span></code> to your launch script.</p>
|
|
<p>For example, try <code class="docutils literal notranslate"><span class="pre">mpirun</span> <span class="pre">-n</span> <span class="pre">1</span> <span class="pre">--oversubscribe</span> <span class="pre">--allow-run-as-root</span> <span class="pre">python</span> <span class="pre">llm_inference_distributed.py</span></code>.</p>
|
|
</li>
|
|
<li><p>MPI_ABORT was invoked on rank 1 in communicator MPI_COMM_WORLD with errorcode 1.</p>
|
|
<p>Because the LLM API relies on the <code class="docutils literal notranslate"><span class="pre">mpi4py</span></code> library, put the LLM class in a function and protect the main entrypoint to the program under the <code class="docutils literal notranslate"><span class="pre">__main__</span></code> namespace to avoid a <a class="reference external" href="https://mpi4py.readthedocs.io/en/stable/mpi4py.futures.html#mpipoolexecutor">recursive spawn</a> process in <code class="docutils literal notranslate"><span class="pre">mpi4py</span></code>.</p>
|
|
<p>This limitation is applicable for multi-GPU inference only.</p>
|
|
</li>
|
|
<li><p>Cannot quit after generation</p>
|
|
<p>The LLM instance manages threads and processes, which may prevent its reference count from reaching zero. To address this issue, there are two common solutions:</p>
|
|
<ol class="arabic simple">
|
|
<li><p>Wrap the LLM instance in a function, as demonstrated in the quickstart guide. This will reduce the reference count and trigger the shutdown process.</p></li>
|
|
<li><p>Use LLM as an contextmanager, with the following code: <code class="docutils literal notranslate"><span class="pre">with</span> <span class="pre">LLM(...)</span> <span class="pre">as</span> <span class="pre">llm:</span> <span class="pre">...</span></code>, the shutdown methed will be invoked automatically once it goes out of the <code class="docutils literal notranslate"><span class="pre">with</span></code>-statement block.</p></li>
|
|
</ol>
|
|
</li>
|
|
</ul>
|
|
</section>
|
|
</section>
|
|
|
|
|
|
</div>
|
|
</div>
|
|
<footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
|
|
<a href="../installation/grace-hopper.html" class="btn btn-neutral float-left" title="Installing on Grace Hopper" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
|
|
<a href="reference.html" class="btn btn-neutral float-right" title="API Reference" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
|
|
</div>
|
|
|
|
<hr/>
|
|
|
|
<div role="contentinfo">
|
|
<jinja2.runtime.BlockReference object at 0x7fed9b9f93d0>
|
|
|
|
<div class="footer">
|
|
<p>
|
|
Copyright © 2024 NVIDIA Corporation
|
|
</p>
|
|
<p>
|
|
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/" target="_blank" rel="noopener"
|
|
data-cms-ai="0">Privacy Policy</a> |
|
|
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/" target="_blank" rel="noopener"
|
|
data-cms-ai="0">Manage My Privacy</a> |
|
|
<a class="Link" href="https://www.nvidia.com/en-us/preferences/start/" target="_blank" rel="noopener"
|
|
data-cms-ai="0">Do Not Sell or Share My Data</a> |
|
|
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/" target="_blank"
|
|
rel="noopener" data-cms-ai="0">Terms of Service</a> |
|
|
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/" target="_blank" rel="noopener"
|
|
data-cms-ai="0">Accessibility</a> |
|
|
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/" target="_blank"
|
|
rel="noopener" data-cms-ai="0">Corporate Policies</a> |
|
|
<a class="Link" href="https://www.nvidia.com/en-us/product-security/" target="_blank" rel="noopener"
|
|
data-cms-ai="0">Product Security</a> |
|
|
<a class="Link" href="https://www.nvidia.com/en-us/contact/" target="_blank" rel="noopener"
|
|
data-cms-ai="0">Contact</a>
|
|
</p>
|
|
</div>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
</footer>
|
|
</div>
|
|
</div>
|
|
</section>
|
|
</div>
|
|
<script>
|
|
jQuery(function () {
|
|
SphinxRtdTheme.Navigation.enable(true);
|
|
});
|
|
</script>
|
|
|
|
</body>
|
|
</html> |