TensorRT-LLMs/cpp/tensorrt_llm/runtime/gptJsonConfig.cpp
Kaiyu Xie b57221b764
Update TensorRT-LLM (#941)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-01-23 23:22:35 +08:00

325 lines
16 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/runtime/gptJsonConfig.h"
#include "loraManager.h"
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/common/stringUtils.h"
#include <fstream>
#include <nlohmann/json.hpp>
#include <string_view>
using namespace tensorrt_llm::runtime;
namespace tc = tensorrt_llm::common;
namespace
{
using Json = typename nlohmann::json::basic_json;
template <typename FieldType>
FieldType parseJsonFieldOr(Json const& json, std::string_view name, FieldType defaultValue)
{
auto value = defaultValue;
try
{
value = json.at(name).template get<FieldType>();
}
catch (nlohmann::json::out_of_range& e)
{
TLLM_LOG_WARNING("Parameter %s cannot be read from json:", std::string(name).c_str());
TLLM_LOG_WARNING(e.what());
}
return value;
}
template <typename FieldType>
std::optional<FieldType> parseJsonFieldOptional(Json const& json, std::string_view name)
{
std::optional<FieldType> value = std::nullopt;
try
{
value = json.at(name).template get<FieldType>();
}
catch (const nlohmann::json::out_of_range& e)
{
TLLM_LOG_WARNING(e.what());
TLLM_LOG_WARNING("Optional value for parameter %s will not be set.", std::string(name).c_str());
}
catch (const nlohmann::json::type_error& e)
{
TLLM_LOG_WARNING(e.what());
TLLM_LOG_WARNING("Optional value for parameter %s will not be set.", std::string(name).c_str());
}
return value;
}
template <typename InputType>
GptJsonConfig parseJson(InputType&& i)
{
auto constexpr allowExceptions = true;
auto constexpr ingoreComments = true;
auto json = nlohmann::json::parse(i, nullptr, allowExceptions, ingoreComments);
auto engine_version = parseJsonFieldOr(json, "version", std::string("none"));
if (engine_version == std::string("none"))
{
auto const& builderConfig = json.at("builder_config");
auto const name = builderConfig.at("name").template get<std::string>();
auto const precision = builderConfig.at("precision").template get<std::string>();
auto const tensorParallelism = builderConfig.at("tensor_parallel").template get<SizeType>();
auto const pipelineParallelism = parseJsonFieldOr(builderConfig, "pipeline_parallel", 1);
auto const numHeads = builderConfig.at("num_heads").template get<SizeType>() / tensorParallelism;
auto const hiddenSize = builderConfig.at("hidden_size").template get<SizeType>() / tensorParallelism;
auto const mlpHiddenSize = parseJsonFieldOr(builderConfig, "mlp_hidden_size", SizeType{0}) / tensorParallelism;
auto const vocabSize = builderConfig.at("vocab_size").template get<SizeType>();
auto const numLayers = builderConfig.at("num_layers").template get<SizeType>();
auto dataType = nvinfer1::DataType::kFLOAT;
if (!precision.compare("float32"))
dataType = nvinfer1::DataType::kFLOAT;
else if (!precision.compare("float16"))
dataType = nvinfer1::DataType::kHALF;
else if (!precision.compare("bfloat16"))
dataType = nvinfer1::DataType::kBF16;
else
TLLM_CHECK_WITH_INFO(false, tc::fmtstr("Model data type '%s' not supported", precision.c_str()));
auto const quantMode
= tc::QuantMode(parseJsonFieldOr(builderConfig, "quant_mode", tc::QuantMode::none().value()));
// TODO:
// Code crashes when numKvHeads <= 0. Clamping downwards to 1 prevents that, make sure this is best fix.
auto const numKvHeads = std::max(
parseJsonFieldOr(builderConfig, "num_kv_heads", numHeads * tensorParallelism) / tensorParallelism, 1);
auto const maxBatchSize = parseJsonFieldOr(builderConfig, "max_batch_size", 0);
auto const maxBeamWidth = parseJsonFieldOr(builderConfig, "max_beam_width", 0);
auto const maxInputLen = parseJsonFieldOr(builderConfig, "max_input_len", 0);
auto const maxSequenceLen = maxInputLen + parseJsonFieldOr(builderConfig, "max_output_len", 0);
auto const maxDraftLen = parseJsonFieldOr(builderConfig, "max_draft_len", 0);
auto const maxNumTokens = parseJsonFieldOptional<SizeType>(builderConfig, "max_num_tokens");
auto const maxPromptEmbeddingTableSize
= parseJsonFieldOr<SizeType>(builderConfig, "max_prompt_embedding_table_size", 0);
auto const computeContextLogits = parseJsonFieldOr(builderConfig, "gather_context_logits", false);
auto const computeGenerationLogits = parseJsonFieldOr(builderConfig, "gather_generation_logits", false);
;
auto const& pluginConfig = json.at("plugin_config");
auto const pagedKvCache = pluginConfig.at("paged_kv_cache");
auto const tokensPerBlock = pluginConfig.at("tokens_per_block");
auto const useGptAttentionPlugin = !pluginConfig.at("gpt_attention_plugin").is_null();
auto const removeInputPadding = pluginConfig.at("remove_input_padding").template get<bool>();
auto const useCustomAllReduce = pluginConfig.at("use_custom_all_reduce").template get<bool>();
auto const useContextFMHAForGeneration
= pluginConfig.at("use_context_fmha_for_generation").template get<bool>();
auto const pagedContextFMHA = pluginConfig.at("use_paged_context_fmha").template get<bool>();
auto useLoraPlugin = !pluginConfig.at("lora_plugin").is_null();
auto modelConfig = GptModelConfig{vocabSize, numLayers, numHeads, hiddenSize, dataType};
modelConfig.useGptAttentionPlugin(useGptAttentionPlugin);
modelConfig.usePackedInput(removeInputPadding);
modelConfig.usePagedKvCache(pagedKvCache);
modelConfig.useCustomAllReduce(useCustomAllReduce);
modelConfig.setTokensPerBlock(tokensPerBlock);
modelConfig.setQuantMode(quantMode);
modelConfig.setNbKvHeads(numKvHeads);
modelConfig.computeContextLogits(computeContextLogits);
modelConfig.computeGenerationLogits(computeGenerationLogits);
modelConfig.setUseContextFMHAForGeneration(useContextFMHAForGeneration);
modelConfig.setPagedContextFMHA(pagedContextFMHA);
modelConfig.setMlpHiddenSize(mlpHiddenSize);
modelConfig.setMaxBatchSize(maxBatchSize);
modelConfig.setMaxBeamWidth(maxBeamWidth);
modelConfig.setMaxInputLen(maxInputLen);
modelConfig.setMaxSequenceLen(maxSequenceLen);
modelConfig.setMaxNumTokens(maxNumTokens);
modelConfig.setMaxDraftLen(maxDraftLen);
modelConfig.setMaxPromptEmbeddingTableSize(maxPromptEmbeddingTableSize);
if (useLoraPlugin)
{
auto const loraTargetModules
= parseJsonFieldOr(builderConfig, "lora_target_modules", std::vector<std::string>{});
modelConfig.setLoraModules(LoraModule::createLoraModules(loraTargetModules, hiddenSize, mlpHiddenSize,
numHeads, numKvHeads, modelConfig.getSizePerHead(), tensorParallelism));
if (modelConfig.getLoraModules().size() == 0)
{
TLLM_LOG_WARNING("lora_plugin enabled, but no lora module enabled: setting useLoraPlugin to false");
useLoraPlugin = false;
}
}
modelConfig.useLoraPlugin(useLoraPlugin);
if (name == std::string("chatglm_6b") || name == std::string("glm_10b"))
{
modelConfig.setModelVariant(GptModelConfig::ModelVariant::kGlm);
// kGlm is only for ChatGLM-6B and GLM-10B
}
return GptJsonConfig{name, engine_version, precision, tensorParallelism, pipelineParallelism, modelConfig};
}
else
{
auto const& pretrainedConfig = json.at("pretrained_config");
auto const& buildConfig = json.at("build_config");
auto const architecture = pretrainedConfig.at("architecture").template get<std::string>();
auto const name = architecture;
auto const dtype = pretrainedConfig.at("dtype").template get<std::string>();
auto const& mapping = pretrainedConfig.at("mapping");
auto const tpSize = mapping.at("tp_size").template get<SizeType>();
auto const ppSize = parseJsonFieldOr(mapping, "pp_size", 1);
auto const numAttentionHeads = pretrainedConfig.at("num_attention_heads").template get<SizeType>() / tpSize;
auto const hiddenSize = pretrainedConfig.at("hidden_size").template get<SizeType>() / tpSize;
auto const vocabSize = pretrainedConfig.at("vocab_size").template get<SizeType>();
auto const numHiddenLayers = pretrainedConfig.at("num_hidden_layers").template get<SizeType>();
auto dataType = nvinfer1::DataType::kFLOAT;
if (!dtype.compare("float32"))
dataType = nvinfer1::DataType::kFLOAT;
else if (!dtype.compare("float16"))
dataType = nvinfer1::DataType::kHALF;
else if (!dtype.compare("bfloat16"))
dataType = nvinfer1::DataType::kBF16;
else
TLLM_CHECK_WITH_INFO(false, tc::fmtstr("Model data type '%s' not supported", dtype.c_str()));
auto const& quantization = pretrainedConfig.at("quantization");
auto useSmoothQuant = parseJsonFieldOr(quantization, "use_smooth_quant", false);
auto perChannel = parseJsonFieldOr(quantization, "per_channel", false);
auto perToken = parseJsonFieldOr(quantization, "per_token", false);
// TODO: Unused parameters
// auto perGroup = parseJsonFieldOr(quantization, "per_group", false);
// auto groupSize = parseJsonFieldOr(quantization, "group_size", 128);
auto int8KvCache = parseJsonFieldOr(quantization, "int8_kv_cache", false);
auto enableFp8 = parseJsonFieldOr(quantization, "enable_fp8", false);
auto fp8KvCache = parseJsonFieldOr(quantization, "fp8_kv_cache", false);
auto useWeightOnly = parseJsonFieldOr(quantization, "use_weight_only", false);
auto weightOnlyPrecision = parseJsonFieldOr(quantization, "weight_only_precision", std::string("int8"));
bool quantizeWeights = false;
bool quantizeActivations = false;
if (useSmoothQuant)
{
quantizeWeights = true;
quantizeActivations = true;
}
else if (useWeightOnly)
{
quantizeWeights = true;
perToken = false;
perChannel = false;
}
bool useInt4Weights = (weightOnlyPrecision == std::string("int4"));
auto const quantMode = tc::QuantMode::fromDescription(quantizeWeights, quantizeActivations, perToken,
perChannel, useInt4Weights, int8KvCache, fp8KvCache, enableFp8);
// TODO:
// Code crashes when numKvHeads <= 0. Clamping downwards to 1 prevents that, make sure this is best fix.
auto const numKVHeads = pretrainedConfig.at("num_key_value_heads").template get<SizeType>();
auto const numKeyValueHeads = std::max(numKVHeads / tpSize, 1);
auto const maxBatchSize = parseJsonFieldOr(buildConfig, "max_batch_size", 0);
auto const maxBeamWidth = parseJsonFieldOr(buildConfig, "max_beam_width", 0);
auto const maxInputLen = parseJsonFieldOr(buildConfig, "max_input_len", 0);
auto const maxSequenceLen = maxInputLen + parseJsonFieldOr(buildConfig, "max_output_len", 0);
auto const maxDraftLen = parseJsonFieldOr(buildConfig, "max_draft_len", 0);
auto const maxNumTokens = parseJsonFieldOptional<SizeType>(buildConfig, "max_num_tokens");
auto const maxPromptEmbeddingTableSize
= parseJsonFieldOr<SizeType>(buildConfig, "max_prompt_embedding_table_size", 0);
auto const computeContextLogits = parseJsonFieldOr(buildConfig, "gather_context_logits", false);
auto const computeGenerationLogits = parseJsonFieldOr(buildConfig, "gather_generation_logits", false);
auto const& pluginConfig = buildConfig.at("plugin_config");
auto const pagedKvCache = pluginConfig.at("paged_kv_cache");
auto const tokensPerBlock = pluginConfig.at("tokens_per_block");
auto const useGptAttentionPlugin = !pluginConfig.at("gpt_attention_plugin").is_null();
auto const removeInputPadding = pluginConfig.at("remove_input_padding").template get<bool>();
auto const useCustomAllReduce = pluginConfig.at("use_custom_all_reduce").template get<bool>();
auto const useContextFMHAForGeneration
= pluginConfig.at("use_context_fmha_for_generation").template get<bool>();
auto modelConfig = GptModelConfig{vocabSize, numHiddenLayers, numAttentionHeads, hiddenSize, dataType};
modelConfig.useGptAttentionPlugin(useGptAttentionPlugin);
modelConfig.usePackedInput(removeInputPadding);
modelConfig.usePagedKvCache(pagedKvCache);
modelConfig.useCustomAllReduce(useCustomAllReduce);
modelConfig.setTokensPerBlock(tokensPerBlock);
modelConfig.setQuantMode(quantMode);
modelConfig.setNbKvHeads(numKeyValueHeads);
modelConfig.computeContextLogits(computeContextLogits);
modelConfig.computeGenerationLogits(computeGenerationLogits);
modelConfig.setUseContextFMHAForGeneration(useContextFMHAForGeneration);
modelConfig.setMaxBatchSize(maxBatchSize);
modelConfig.setMaxBeamWidth(maxBeamWidth);
modelConfig.setMaxInputLen(maxInputLen);
modelConfig.setMaxSequenceLen(maxSequenceLen);
modelConfig.setMaxNumTokens(maxNumTokens);
modelConfig.setMaxDraftLen(maxDraftLen);
modelConfig.setMaxPromptEmbeddingTableSize(maxPromptEmbeddingTableSize);
// TODO: Verify the architecture field in ChatGLM models
if (name == std::string("ChatGLMModel") || name == std::string("GLMModel"))
{
modelConfig.setModelVariant(GptModelConfig::ModelVariant::kGlm);
// kGlm is only for ChatGLM-6B and GLM-10B
}
return GptJsonConfig{name, engine_version, dtype, tpSize, ppSize, modelConfig};
}
}
} // namespace
std::string GptJsonConfig::engineFilename(WorldConfig const& worldConfig, std::string const& model) const
{
TLLM_CHECK_WITH_INFO(getTensorParallelism() == worldConfig.getTensorParallelism(), "tensor parallelism mismatch");
TLLM_CHECK_WITH_INFO(
getPipelineParallelism() == worldConfig.getPipelineParallelism(), "pipeline parallelism mismatch");
auto pp = worldConfig.isPipelineParallel() ? "_pp" + std::to_string(worldConfig.getPipelineParallelism()) : "";
if (getVersion() == std::string("none"))
{
return model + "_" + getPrecision() + "_tp" + std::to_string(worldConfig.getTensorParallelism()) + pp + "_rank"
+ std::to_string(worldConfig.getRank()) + ".engine";
}
else
{
return "rank" + std::to_string(worldConfig.getRank()) + ".engine";
}
}
GptJsonConfig GptJsonConfig::parse(std::string const& json)
{
return parseJson(json);
}
GptJsonConfig GptJsonConfig::parse(std::istream& json)
{
return parseJson(json);
}
GptJsonConfig GptJsonConfig::parse(std::filesystem::path const& path)
{
TLLM_CHECK_WITH_INFO(std::filesystem::exists(path), std::string("File does not exist: ") + path.string());
std::ifstream json(path);
return parse(json);
}