mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-02-06 19:21:52 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
584 lines
23 KiB
Python
584 lines
23 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import math
|
|
import os
|
|
import time
|
|
from pathlib import Path
|
|
|
|
# isort: off
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
import tensorrt as trt
|
|
from tensorrt_llm._common import check_max_num_tokens
|
|
# isort: on
|
|
from transformers import AutoModelForCausalLM
|
|
from weight import (get_scaling_factors, load_from_awq_gpt_j,
|
|
load_from_bin_gpt_j, load_from_hf_gpt_j, parse_config)
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm._utils import str_dtype_to_trt
|
|
from tensorrt_llm.builder import Builder
|
|
from tensorrt_llm.logger import logger
|
|
from tensorrt_llm.mapping import Mapping
|
|
from tensorrt_llm.models import quantize_model
|
|
from tensorrt_llm.network import net_guard
|
|
from tensorrt_llm.plugin.plugin import ContextFMHAType
|
|
from tensorrt_llm.profiler import check_gpt_mem_usage
|
|
from tensorrt_llm.quantization import QuantMode
|
|
|
|
MODEL_NAME = "gptj"
|
|
hf_gpt = None
|
|
awq_gptj_config = None
|
|
|
|
|
|
def get_engine_name(model, dtype, tp_size, rank):
|
|
return '{}_{}_tp{}_rank{}.engine'.format(model, dtype, tp_size, rank)
|
|
|
|
|
|
def serialize_engine(engine, path):
|
|
logger.info(f'Serializing engine to {path}...')
|
|
tik = time.time()
|
|
with open(path, 'wb') as f:
|
|
f.write(engine)
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
logger.info(f'Engine serialized. Total time: {t}')
|
|
|
|
|
|
def parse_arguments(args):
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--world_size',
|
|
type=int,
|
|
default=1,
|
|
help='world size, only support tensor parallelism now')
|
|
parser.add_argument(
|
|
'--model_dir',
|
|
type=str,
|
|
default=None,
|
|
help='The path to HF GPT-J model / checkpoints to read weights from')
|
|
parser.add_argument('--quant_ckpt_path', type=str, default=None)
|
|
parser.add_argument(
|
|
'--ft_model_dir',
|
|
type=str,
|
|
default=None,
|
|
help=
|
|
'The path to FT-format (binary) GPT-J model / checkpoints to read weights from'
|
|
)
|
|
parser.add_argument('--dtype',
|
|
type=str,
|
|
default='float16',
|
|
choices=['float16', 'float32'])
|
|
parser.add_argument('--logits_dtype',
|
|
type=str,
|
|
default='float32',
|
|
choices=['float16', 'float32'])
|
|
parser.add_argument(
|
|
'--timing_cache',
|
|
type=str,
|
|
default='model.cache',
|
|
help=
|
|
'The path of to read timing cache from, will be ignored if the file does not exist'
|
|
)
|
|
parser.add_argument(
|
|
'--profiling_verbosity',
|
|
type=str,
|
|
default='layer_names_only',
|
|
choices=['layer_names_only', 'detailed', 'none'],
|
|
help=
|
|
'The profiling verbosity for the generated TRT engine. Set to detailed can inspect tactic choices and kernel parameters.'
|
|
)
|
|
parser.add_argument('--log_level', type=str, default='info')
|
|
parser.add_argument('--vocab_size', type=int, default=50401)
|
|
parser.add_argument('--n_layer', type=int, default=28)
|
|
parser.add_argument('--n_positions', type=int, default=2048)
|
|
parser.add_argument('--n_embd', type=int, default=4096)
|
|
parser.add_argument('--n_head', type=int, default=16)
|
|
parser.add_argument('--hidden_act', type=str, default='gelu')
|
|
parser.add_argument('--rotary_dim', type=int, default=64)
|
|
parser.add_argument('--max_batch_size', type=int, default=256)
|
|
parser.add_argument('--max_input_len', type=int, default=200)
|
|
parser.add_argument('--max_output_len', type=int, default=200)
|
|
parser.add_argument('--max_beam_width', type=int, default=1)
|
|
parser.add_argument('--use_gpt_attention_plugin',
|
|
nargs='?',
|
|
const='float16',
|
|
type=str,
|
|
default=False,
|
|
choices=['float16', 'float32'])
|
|
parser.add_argument('--use_gemm_plugin',
|
|
nargs='?',
|
|
const='float16',
|
|
type=str,
|
|
default=False,
|
|
choices=['float16', 'float32'])
|
|
parser.add_argument('--use_layernorm_plugin',
|
|
nargs='?',
|
|
const='float16',
|
|
type=str,
|
|
default=False,
|
|
choices=['float16', 'float32'])
|
|
parser.add_argument('--parallel_build', default=False, action='store_true')
|
|
parser.add_argument('--enable_context_fmha',
|
|
default=False,
|
|
action='store_true')
|
|
parser.add_argument('--enable_context_fmha_fp32_acc',
|
|
default=False,
|
|
action='store_true')
|
|
parser.add_argument(
|
|
'--use_paged_context_fmha',
|
|
action='store_true',
|
|
help=
|
|
'Activates paged context FMHA. This mode of the context FMHA is required for chunked context, speculative decoding and reuse of KV cache blocks. Context FMHA performance is worse when this mode is on.'
|
|
)
|
|
parser.add_argument(
|
|
'--multi_block_mode',
|
|
default=False,
|
|
action='store_true',
|
|
help=
|
|
'Split long kv sequence into multiple blocks (applied to generation MHA kernels). \
|
|
It is beneifical when batchxnum_heads cannot fully utilize GPU.'
|
|
)
|
|
parser.add_argument(
|
|
'--disable_xqa',
|
|
default=False,
|
|
action='store_true',
|
|
help=
|
|
'Disable XQA optimization for the generation MHA. See more details in docs/gpt_attention.'
|
|
)
|
|
parser.add_argument('--gpus_per_node', type=int, default=8)
|
|
parser.add_argument(
|
|
'--output_dir',
|
|
type=str,
|
|
default='engine_outputs',
|
|
help=
|
|
'The path to save the serialized engine files, timing cache file and model configs'
|
|
)
|
|
parser.add_argument('--remove_input_padding',
|
|
default=False,
|
|
action='store_true')
|
|
parser.add_argument('--enable_fp8', default=False, action='store_true')
|
|
parser.add_argument(
|
|
'--quantized_fp8_model_path',
|
|
type=str,
|
|
default=None,
|
|
help='Path of a quantized model checkpoint that in .npz format')
|
|
parser.add_argument(
|
|
'--fp8_kv_cache',
|
|
default=False,
|
|
action="store_true",
|
|
help=
|
|
'By default, we use dtype for KV cache. fp8_kv_cache chooses fp8 quantization for KV'
|
|
)
|
|
parser.add_argument(
|
|
'--int8_kv_cache',
|
|
default=False,
|
|
action="store_true",
|
|
help=
|
|
'By default, we use dtype for KV cache. int8_kv_cache chooses int8 quantization for KV'
|
|
)
|
|
parser.add_argument(
|
|
'--use_inflight_batching',
|
|
action="store_true",
|
|
default=False,
|
|
help="Activates inflight batching mode of gptAttentionPlugin.")
|
|
parser.add_argument(
|
|
'--paged_kv_cache',
|
|
action="store_true",
|
|
default=False,
|
|
help=
|
|
'By default we use contiguous KV cache. By setting this flag you enable paged KV cache'
|
|
)
|
|
parser.add_argument('--tokens_per_block',
|
|
type=int,
|
|
default=128,
|
|
help='Number of tokens per block in paged KV cache')
|
|
parser.add_argument(
|
|
'--max_num_tokens',
|
|
type=int,
|
|
default=None,
|
|
help=
|
|
'Define the max number of tokens supported by the engine, note that it takes no effect if --remove_input_padding is not set'
|
|
)
|
|
parser.add_argument(
|
|
'--per_group',
|
|
default=False,
|
|
action="store_true",
|
|
help=
|
|
'By default, we use a single static scaling factor to scale weights in the int4 range. '
|
|
'per_group chooses at run time, and for each group, a custom scaling factor. '
|
|
'The flag is built for GPTQ/AWQ quantization.')
|
|
parser.add_argument(
|
|
'--use_weight_only',
|
|
default=False,
|
|
action="store_true",
|
|
help='Quantize weights for the various GEMMs to INT4/INT8.'
|
|
'See --weight_only_precision to set the precision')
|
|
parser.add_argument(
|
|
'--weight_only_precision',
|
|
const='int8',
|
|
type=str,
|
|
nargs='?',
|
|
default='int8',
|
|
choices=['int8', 'int4', 'int4_awq'],
|
|
help=
|
|
'Define the precision for the weights when using weight-only quantization.'
|
|
'You must also use --use_weight_only for that argument to have an impact.'
|
|
)
|
|
parser.add_argument(
|
|
'--quantize_lm_head',
|
|
default=False,
|
|
action="store_true",
|
|
help='Quantize lm_head weights as well when using int4_awq.')
|
|
parser.add_argument(
|
|
'--strongly_typed',
|
|
default=False,
|
|
action="store_true",
|
|
help=
|
|
'This option is introduced with trt 9.1.0.1+ and will reduce the building time significantly for fp8.'
|
|
)
|
|
args = parser.parse_args(args)
|
|
|
|
logger.set_level(args.log_level)
|
|
|
|
if not args.remove_input_padding:
|
|
if args.use_gpt_attention_plugin:
|
|
logger.warning(
|
|
f"It is recommended to specify --remove_input_padding when using GPT attention plugin"
|
|
)
|
|
|
|
if args.model_dir is not None:
|
|
global hf_gpt
|
|
logger.info(f'Loading HF GPTJ model from {args.model_dir}...')
|
|
hf_gpt = AutoModelForCausalLM.from_pretrained(args.model_dir)
|
|
args.n_embd = hf_gpt.config.n_embd
|
|
args.n_head = hf_gpt.config.n_head
|
|
args.n_layer = hf_gpt.config.n_layer
|
|
args.n_positions = hf_gpt.config.n_positions
|
|
args.vocab_size = hf_gpt.config.vocab_size
|
|
elif args.ft_model_dir is not None:
|
|
logger.info(f"Setting model configuration from {args.ft_model_dir}.")
|
|
n_embd, n_head, n_layer, n_positions, vocab_size, _, hidden_act, rotary_pct, bias, inter_size, multi_query_mode, dtype, prompt_num_tasks, prompt_max_vocab_size = parse_config(
|
|
Path(args.ft_model_dir) / "config.ini")
|
|
args.n_embd = n_embd
|
|
args.n_head = n_head
|
|
args.n_layer = n_layer
|
|
args.n_positions = n_positions
|
|
args.vocab_size = vocab_size
|
|
args.hidden_act = hidden_act
|
|
args.rotary_pct = rotary_pct
|
|
args.bias = bias
|
|
args.dtype = dtype
|
|
args.inter_size = inter_size
|
|
args.multi_query_mode = multi_query_mode
|
|
|
|
if args.weight_only_precision == 'int4_awq':
|
|
if args.vocab_size % 64 != 0:
|
|
args.vocab_size = int((args.vocab_size + 63) / 64) * 64
|
|
logger.info("To use awq we pad it to {}.".format(args.vocab_size))
|
|
|
|
if args.use_weight_only:
|
|
if args.per_group:
|
|
args.quant_mode = QuantMode.from_description(
|
|
quantize_weights=True,
|
|
quantize_activations=False,
|
|
per_token=False,
|
|
per_channel=False,
|
|
per_group=True,
|
|
use_int4_weights=True)
|
|
else:
|
|
args.quant_mode = QuantMode.use_weight_only(
|
|
args.weight_only_precision == 'int4')
|
|
else:
|
|
args.quant_mode = QuantMode(0)
|
|
|
|
if args.int8_kv_cache:
|
|
args.quant_mode = args.quant_mode.set_int8_kv_cache()
|
|
elif args.fp8_kv_cache:
|
|
assert (
|
|
args.use_gpt_attention_plugin
|
|
), "You have to use GPT attention plugin when fp8 KV cache is set"
|
|
args.quant_mode = args.quant_mode.set_fp8_kv_cache()
|
|
|
|
if args.enable_fp8:
|
|
args.quant_mode = args.quant_mode.set_fp8_qdq()
|
|
|
|
if args.use_inflight_batching:
|
|
if not args.use_gpt_attention_plugin:
|
|
args.use_gpt_attention_plugin = 'float16'
|
|
logger.info(
|
|
f"Using GPT attention plugin for inflight batching mode. Setting to default '{args.use_gpt_attention_plugin}'"
|
|
)
|
|
if not args.remove_input_padding:
|
|
args.remove_input_padding = True
|
|
logger.info(
|
|
"Using remove input padding for inflight batching mode.")
|
|
if not args.paged_kv_cache:
|
|
args.paged_kv_cache = True
|
|
logger.info("Using paged KV cache for inflight batching mode.")
|
|
|
|
args.max_num_tokens = check_max_num_tokens(
|
|
max_num_tokens=args.max_num_tokens,
|
|
max_batch_size=args.max_batch_size,
|
|
max_input_len=args.max_input_len,
|
|
remove_input_padding=args.remove_input_padding)
|
|
|
|
assert (math.log2(args.tokens_per_block).is_integer()
|
|
), "tokens_per_block must be power of 2"
|
|
if args.enable_context_fmha or args.enable_context_fmha_fp32_acc:
|
|
assert (args.tokens_per_block >=
|
|
128), "Context fMHA requires >= 128 tokens per block"
|
|
|
|
return args
|
|
|
|
|
|
def build_rank_engine(builder: Builder,
|
|
builder_config: tensorrt_llm.builder.BuilderConfig,
|
|
engine_name, rank, args):
|
|
'''
|
|
@brief: Build the engine on the given rank.
|
|
@param rank: The rank to build the engine.
|
|
@param args: The cmd line arguments.
|
|
@return: The built engine.
|
|
'''
|
|
kv_dtype = trt.float16 if args.dtype == 'float16' else trt.float32
|
|
mapping = Mapping(world_size=args.world_size,
|
|
rank=rank,
|
|
tp_size=args.world_size) # TP only
|
|
|
|
# Initialize Module
|
|
tensorrt_llm_gpt = tensorrt_llm.models.GPTJForCausalLM(
|
|
num_layers=args.n_layer,
|
|
num_heads=args.n_head,
|
|
hidden_size=args.n_embd,
|
|
vocab_size=args.vocab_size,
|
|
hidden_act=args.hidden_act,
|
|
max_position_embeddings=args.n_positions,
|
|
rotary_dim=args.rotary_dim,
|
|
dtype=kv_dtype,
|
|
logits_dtype=args.logits_dtype,
|
|
mapping=mapping,
|
|
quant_mode=args.quant_mode)
|
|
|
|
quantize_kwargs = {}
|
|
if args.use_weight_only and args.per_group:
|
|
assert args.weight_only_precision == 'int4_awq'
|
|
quantize_kwargs = {
|
|
"group_size": 128,
|
|
"zero": False,
|
|
"pre_quant_scale": True,
|
|
"exclude_modules": ['lm_head'] if not args.quantize_lm_head else [],
|
|
}
|
|
tensorrt_llm_gpt = quantize_model(tensorrt_llm_gpt, args.quant_mode,
|
|
**quantize_kwargs)
|
|
|
|
if args.model_dir is not None:
|
|
assert hf_gpt is not None, f'Could not load weights from hf_gpt model as it is not loaded yet.'
|
|
if args.enable_fp8:
|
|
gptj_scaling_factors = get_scaling_factors(
|
|
args.quantized_fp8_model_path, args.n_layer, args.quant_mode)
|
|
else:
|
|
gptj_scaling_factors = None
|
|
if args.use_weight_only and args.weight_only_precision == 'int4_awq' and args.per_group:
|
|
load_from_awq_gpt_j(tensorrt_llm_gpt,
|
|
quant_ckpt_path=args.quant_ckpt_path,
|
|
quantize_lm_head=args.quantize_lm_head,
|
|
ft_model_dir=args.ft_model_dir,
|
|
mapping=mapping,
|
|
fp16=(args.dtype == 'float16'))
|
|
else:
|
|
load_from_hf_gpt_j(tensorrt_llm_gpt,
|
|
hf_gpt,
|
|
fp16=(args.dtype == 'float16'),
|
|
scaling_factors=gptj_scaling_factors)
|
|
elif args.ft_model_dir is not None:
|
|
load_from_bin_gpt_j(tensorrt_llm_gpt, args.ft_model_dir, rank,
|
|
args.world_size, args.dtype)
|
|
|
|
# Module -> Network
|
|
network = builder.create_network()
|
|
network.trt_network.name = engine_name
|
|
if args.use_gpt_attention_plugin:
|
|
network.plugin_config.set_gpt_attention_plugin(
|
|
dtype=args.use_gpt_attention_plugin)
|
|
if args.use_gemm_plugin:
|
|
if not args.enable_fp8:
|
|
network.plugin_config.set_gemm_plugin(dtype=args.use_gemm_plugin)
|
|
else:
|
|
logger.info(
|
|
"Gemm plugin does not support FP8. Disabled Gemm plugin.")
|
|
if args.use_layernorm_plugin:
|
|
network.plugin_config.set_layernorm_plugin(
|
|
dtype=args.use_layernorm_plugin)
|
|
assert not (args.enable_context_fmha and args.enable_context_fmha_fp32_acc)
|
|
if args.enable_context_fmha:
|
|
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
|
|
if args.enable_context_fmha_fp32_acc:
|
|
network.plugin_config.set_context_fmha(
|
|
ContextFMHAType.enabled_with_fp32_acc)
|
|
if args.multi_block_mode:
|
|
network.plugin_config.enable_mmha_multi_block_mode()
|
|
if args.use_weight_only:
|
|
if args.per_group:
|
|
network.plugin_config.set_weight_only_groupwise_quant_matmul_plugin(
|
|
dtype='float16')
|
|
else:
|
|
network.plugin_config.set_weight_only_quant_matmul_plugin(
|
|
dtype='float16')
|
|
if args.world_size > 1:
|
|
network.plugin_config.set_nccl_plugin(args.dtype)
|
|
if args.remove_input_padding:
|
|
network.plugin_config.enable_remove_input_padding()
|
|
if args.paged_kv_cache:
|
|
network.plugin_config.enable_paged_kv_cache(args.tokens_per_block)
|
|
if not args.disable_xqa:
|
|
network.plugin_config.enable_xqa_optimization()
|
|
|
|
if args.use_paged_context_fmha:
|
|
assert args.enable_context_fmha or args.enable_context_fmha_fp32_acc, "context fmha must be enabled"
|
|
network.plugin_config.set_paged_context_fmha()
|
|
|
|
with net_guard(network):
|
|
# Prepare
|
|
network.set_named_parameters(tensorrt_llm_gpt.named_parameters())
|
|
|
|
# Forward
|
|
inputs = tensorrt_llm_gpt.prepare_inputs(
|
|
max_batch_size=args.max_batch_size,
|
|
max_input_len=args.max_input_len,
|
|
max_seq_len=args.max_input_len + args.max_output_len,
|
|
use_cache=True,
|
|
max_beam_width=args.max_beam_width,
|
|
max_num_tokens=args.max_num_tokens)
|
|
|
|
tensorrt_llm_gpt(*inputs)
|
|
|
|
tensorrt_llm.graph_rewriting.optimize(network)
|
|
|
|
engine = None
|
|
|
|
# Network -> Engine
|
|
engine = builder.build_engine(network, builder_config)
|
|
if rank == 0:
|
|
config_path = os.path.join(args.output_dir, 'config.json')
|
|
builder.save_config(builder_config, config_path)
|
|
|
|
return engine
|
|
|
|
|
|
def build(rank, args):
|
|
torch.cuda.set_device(rank % args.gpus_per_node)
|
|
tensorrt_llm.logger.set_level(args.log_level)
|
|
if not os.path.exists(args.output_dir):
|
|
os.makedirs(args.output_dir)
|
|
|
|
# when doing serializing build, all ranks share one engine
|
|
builder = Builder()
|
|
|
|
cache = None
|
|
for cur_rank in range(args.world_size):
|
|
# skip other ranks if parallel_build is enabled
|
|
if args.parallel_build and cur_rank != rank:
|
|
continue
|
|
# NOTE: int8 flag is required to be true when INT8 tensors are exposed to TRT
|
|
# TRT-LLM has INT8 I/O when act/weights are quantized without group-scaling (AWQ, GPTQ)
|
|
# OR INT8 KV cache is set to contiguous (without paged KV cache enabled).
|
|
int8_trt_flag = (args.quant_mode.has_act_or_weight_quant()
|
|
and not args.quant_mode.has_per_group_scaling()) or (
|
|
not args.paged_kv_cache
|
|
and args.quant_mode.has_int8_kv_cache())
|
|
|
|
builder_config = builder.create_builder_config(
|
|
name=MODEL_NAME,
|
|
precision=args.dtype,
|
|
timing_cache=args.timing_cache if cache is None else cache,
|
|
profiling_verbosity=args.profiling_verbosity,
|
|
tensor_parallel=args.world_size, # TP only
|
|
parallel_build=args.parallel_build,
|
|
num_layers=args.n_layer,
|
|
num_heads=args.n_head,
|
|
hidden_size=args.n_embd,
|
|
vocab_size=args.vocab_size,
|
|
hidden_act=args.hidden_act,
|
|
max_position_embeddings=args.n_positions,
|
|
max_batch_size=args.max_batch_size,
|
|
max_beam_width=args.max_beam_width,
|
|
max_input_len=args.max_input_len,
|
|
max_output_len=args.max_output_len,
|
|
max_num_tokens=args.max_num_tokens,
|
|
int8=int8_trt_flag,
|
|
quant_mode=args.quant_mode,
|
|
strongly_typed=args.strongly_typed)
|
|
|
|
engine_name = get_engine_name(MODEL_NAME, args.dtype, args.world_size,
|
|
cur_rank)
|
|
engine = build_rank_engine(builder, builder_config, engine_name,
|
|
cur_rank, args)
|
|
assert engine is not None, f'Failed to build engine for rank {cur_rank}'
|
|
|
|
local_num_kv_heads = (args.n_head + args.world_size -
|
|
1) // args.world_size
|
|
kv_dtype = str_dtype_to_trt(args.dtype)
|
|
if args.quant_mode.has_int8_kv_cache():
|
|
kv_dtype = str_dtype_to_trt('int8')
|
|
elif args.quant_mode.has_fp8_kv_cache():
|
|
kv_dtype = str_dtype_to_trt('fp8')
|
|
check_gpt_mem_usage(
|
|
engine=engine,
|
|
kv_dtype=kv_dtype,
|
|
use_gpt_attention_plugin=args.use_gpt_attention_plugin,
|
|
paged_kv_cache=args.paged_kv_cache,
|
|
max_batch_size=args.max_batch_size,
|
|
max_beam_width=args.max_beam_width,
|
|
max_seq_len=args.max_input_len + args.max_output_len,
|
|
local_num_kv_heads=local_num_kv_heads,
|
|
head_size=args.n_embd / args.n_head,
|
|
num_layers=args.n_layer)
|
|
|
|
if cur_rank == 0:
|
|
# Use in-memory timing cache for multiple builder passes.
|
|
if not args.parallel_build:
|
|
cache = builder_config.trt_builder_config.get_timing_cache()
|
|
|
|
serialize_engine(engine, os.path.join(args.output_dir, engine_name))
|
|
|
|
if rank == 0:
|
|
ok = builder.save_timing_cache(
|
|
builder_config, os.path.join(args.output_dir, "model.cache"))
|
|
assert ok, "Failed to save timing cache."
|
|
|
|
|
|
def run_build(args=None):
|
|
args = parse_arguments(args)
|
|
tik = time.time()
|
|
if args.parallel_build and args.world_size > 1 and \
|
|
torch.cuda.device_count() >= args.world_size:
|
|
logger.warning(
|
|
f'Parallelly build TensorRT engines. Please make sure that all of the {args.world_size} GPUs are totally free.'
|
|
)
|
|
mp.spawn(build, nprocs=args.world_size, args=(args, ))
|
|
else:
|
|
args.parallel_build = False
|
|
logger.info('Serially build TensorRT engines.')
|
|
build(0, args)
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
logger.info(f'Total time of building all {args.world_size} engines: {t}')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
run_build()
|