TensorRT-LLMs/tensorrt_llm/commands/build.py
Kaiyu Xie b57221b764
Update TensorRT-LLM (#941)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-01-23 23:22:35 +08:00

379 lines
14 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import copy
import os
import time
from concurrent.futures import ProcessPoolExecutor, wait
from importlib.machinery import SourceFileLoader
from multiprocessing import get_context
from typing import Union
import torch
from .._common import check_max_num_tokens
from ..builder import BuildConfig, Builder
from ..graph_rewriting import optimize
from ..logger import logger
from ..models import MODEL_MAP, PretrainedConfig, PretrainedModel
from ..network import net_guard
from ..runtime.engine import Engine, EngineConfig
from ..version import __version__
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint_dir', type=str, default=None)
parser.add_argument('--model_config', type=str, default=None)
parser.add_argument('--build_config', type=str, default=None)
parser.add_argument('--model_cls_file', type=str, default=None)
parser.add_argument('--model_cls_name', type=str, default=None)
parser.add_argument(
'--timing_cache',
type=str,
default='model.cache',
help=
'The path of to read timing cache from, will be ignored if the file does not exist'
)
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument(
'--output_dir',
type=str,
default='engine_outputs',
help=
'The path to save the serialized engine files, timing cache file and model configs'
)
parser.add_argument('--workers',
type=int,
default='1',
help='The number of workers for building in parallel')
parser.add_argument('--max_batch_size', type=int, default=1)
parser.add_argument('--max_input_len', type=int, default=1024)
parser.add_argument('--max_output_len', type=int, default=1024)
parser.add_argument('--max_beam_width', type=int, default=1)
parser.add_argument('--max_num_tokens', type=int, default=None)
parser.add_argument(
'--max_prompt_embedding_table_size',
type=int,
default=0,
help='Setting to a value > 0 enables support for prompt tuning.')
parser.add_argument('--use_gpt_attention_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'bfloat16', 'float32'])
parser.add_argument('--use_gemm_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'bfloat16', 'float32'])
parser.add_argument('--use_lookup_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'bfloat16', 'float32'])
parser.add_argument('--use_selective_scan_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'bfloat16', 'float32'])
parser.add_argument('--enable_context_fmha',
default=False,
action='store_true')
parser.add_argument('--enable_context_fmha_fp32_acc',
default=False,
action='store_true')
parser.add_argument(
'--multi_block_mode',
default=False,
action='store_true',
help=
'Split long kv sequence into multiple blocks (applied to generation MHA kernels). \
It is beneifical when batchxnum_heads cannot fully utilize GPU.'
)
parser.add_argument('--remove_input_padding',
default=False,
action='store_true')
parser.add_argument(
'--paged_kv_cache',
action="store_true",
default=False,
help=
'By default we use contiguous KV cache. By setting this flag you enable paged KV cache'
)
parser.add_argument('--tokens_per_block',
type=int,
default=64,
help='Number of tokens per block in paged KV cache')
parser.add_argument(
'--use_custom_all_reduce',
action='store_true',
help=
'Activates latency-optimized algorithm for all-reduce instead of NCCL.')
parser.add_argument(
'--gather_all_token_logits',
action='store_true',
default=False,
help='Enable both gather_context_logits and gather_generation_logits')
parser.add_argument('--gather_context_logits',
action='store_true',
default=False,
help='Gather context logits')
parser.add_argument('--gather_generation_logits',
action='store_true',
default=False,
help='Gather generation logits')
parser.add_argument('--strongly_typed', action='store_true', default=False)
parser.add_argument('--logits_dtype',
type=str,
default=None,
choices=['float16', 'float32'])
args = parser.parse_args()
if args.gather_all_token_logits:
args.gather_context_logits = True
args.gather_generation_logits = True
return args
def build_model(model: PretrainedModel, build_config: BuildConfig) -> Engine:
builder = Builder()
builder_config = builder.create_builder_config(
precision=model.config.dtype,
int8=model.config.quant_mode.has_act_or_weight_quant()
or model.config.quant_mode.has_int8_kv_cache(),
strongly_typed=build_config.strongly_typed,
quant_mode=model.config.quant_mode)
network = builder.create_network()
network._plugin_config = build_config.plugin_config
use_weight_only = model.config.quant_mode.is_weight_only()
per_group = model.config.quant_mode.has_per_group_scaling()
use_smooth_quant = model.config.quant_mode.has_act_and_weight_quant()
if use_weight_only:
if per_group:
network.plugin_config.set_weight_only_groupwise_quant_matmul_plugin(
dtype='float16')
else:
network.plugin_config.set_weight_only_quant_matmul_plugin(
dtype='float16')
if use_smooth_quant:
network.plugin_config.set_smooth_quant_gemm_plugin(dtype='float16')
network.plugin_config.set_rmsnorm_quantization_plugin(dtype='float16')
network.plugin_config.set_layernorm_quantization_plugin(dtype='float16')
network.plugin_config.set_quantize_tensor_plugin()
network.plugin_config.set_quantize_per_token_plugin()
nccl_plugin = model.config.dtype if model.config.mapping.world_size > 1 else False
if nccl_plugin:
network.plugin_config.set_nccl_plugin(
nccl_plugin, network.plugin_config.use_custom_all_reduce)
with net_guard(network):
# Prepare
network.set_named_parameters(model.named_parameters())
# Forward
inputs = model.prepare_inputs(
max_batch_size=build_config.max_batch_size,
max_input_len=build_config.max_input_len,
max_seq_len=build_config.max_input_len +
build_config.max_output_len,
use_cache=True,
max_beam_width=build_config.max_beam_width,
max_num_tokens=build_config.max_num_tokens,
prompt_embedding_table_size=build_config.
max_prompt_embedding_table_size,
gather_context_logits=build_config.gather_context_logits,
gather_generation_logits=build_config.gather_generation_logits)
model(**inputs)
optimize(network)
# Network -> Engine
engine = builder.build_engine(network, builder_config)
engine_config = EngineConfig(model.config, build_config, __version__)
return Engine(engine_config, engine)
def build(build_config: BuildConfig,
rank: int = 0,
ckpt_dir: str = None,
model_config: Union[str, PretrainedConfig] = None,
weights=None,
model_cls=None,
**kwargs) -> Engine:
if ckpt_dir is not None:
model_config = PretrainedConfig.from_json_file(
os.path.join(ckpt_dir, 'config.json'))
else:
assert model_config is not None
if isinstance(model_config, PretrainedConfig):
model_config = model_config
else:
model_config = PretrainedConfig.from_json_file(model_config)
logits_dtype = kwargs.pop('logits_dtype', None)
if logits_dtype is not None:
model_config.logits_dtype = logits_dtype
model_config.use_prompt_tuning = build_config.max_prompt_embedding_table_size > 0
assert rank < model_config.mapping.world_size
architecture = model_config.architecture
if model_cls is None:
if architecture not in MODEL_MAP:
raise RuntimeError(
f'Unsupported model architecture: {architecture}')
model_cls = MODEL_MAP[architecture]
rank_config = copy.deepcopy(model_config)
rank_config.set_rank(rank)
if ckpt_dir is not None:
model = model_cls.from_checkpoint(ckpt_dir,
rank=rank,
config=rank_config)
else:
model = model_cls.from_config(rank_config)
if weights is not None:
model.load(weights)
return build_model(model, build_config)
def build_and_save(rank, gpu_id, ckpt_dir, build_config, output_dir, log_level,
model_config, model_cls, **kwargs):
torch.cuda.set_device(gpu_id)
logger.set_level(log_level)
engine = build(build_config,
rank,
ckpt_dir,
model_config,
model_cls=model_cls,
**kwargs)
engine.save(output_dir)
def parallel_build(ckpt_dir_or_model_config: str,
build_config: BuildConfig,
output_dir: str,
workers: int = 1,
log_level: str = 'info',
model_cls=None,
**kwargs):
ckpt_dir = ckpt_dir_or_model_config
if ckpt_dir_or_model_config.lower().endswith('.json'):
model_config = PretrainedConfig.from_json_file(ckpt_dir_or_model_config)
ckpt_dir = None
else:
model_config = PretrainedConfig.from_json_file(
os.path.join(ckpt_dir_or_model_config, 'config.json'))
if workers == 1:
for rank in range(model_config.mapping.world_size):
build_and_save(rank, rank % workers, ckpt_dir, build_config,
output_dir, log_level, model_config, model_cls,
**kwargs)
else:
with ProcessPoolExecutor(mp_context=get_context('spawn'),
max_workers=workers) as p:
futures = [
p.submit(build_and_save, rank, rank % workers, ckpt_dir,
build_config, output_dir, log_level, model_config,
model_cls, **kwargs)
for rank in range(model_config.mapping.world_size)
]
wait(futures)
def main():
args = parse_arguments()
logger.set_level(args.log_level)
tik = time.time()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
model_cls = None
if args.model_cls_file is not None:
assert args.model_cls_name is not None
loader = SourceFileLoader('models', args.model_cls_file)
mod = loader.load_module()
model_cls = getattr(mod, args.model_cls_name)
workers = min(torch.cuda.device_count(), args.workers)
if args.build_config is None:
args.max_num_tokens = check_max_num_tokens(
max_num_tokens=args.max_num_tokens,
max_batch_size=args.max_batch_size,
max_input_len=args.max_input_len,
remove_input_padding=args.remove_input_padding)
build_config = BuildConfig.from_dict({
'max_input_len':
args.max_input_len,
'max_output_len':
args.max_output_len,
'max_batch_size':
args.max_batch_size,
'max_beam_width':
args.max_beam_width,
'max_num_tokens':
args.max_num_tokens,
'max_prompt_embedding_table_size':
args.max_prompt_embedding_table_size,
'gather_context_logits':
args.gather_context_logits,
'gather_generation_logits':
args.gather_generation_logits,
'strongly_typed':
args.strongly_typed,
'plugin_config': {
'gpt_attention_plugin': args.use_gpt_attention_plugin,
'gemm_plugin': args.use_gemm_plugin,
'enable_context_fmha': args.enable_context_fmha,
'enable_context_fmha_fp32_acc':
args.enable_context_fmha_fp32_acc,
'remove_input_padding': args.remove_input_padding,
'paged_kv_cache': args.paged_kv_cache,
'tokens_per_block': args.tokens_per_block,
'lookup_plugin': args.use_lookup_plugin,
'use_custom_all_reduce': args.use_custom_all_reduce,
'selective_scan_plugin': args.use_selective_scan_plugin,
}
})
else:
build_config = BuildConfig.from_json_file(args.build_config)
source = args.checkpoint_dir if args.checkpoint_dir is not None else args.model_config
kwargs = {'logits_dtype': args.logits_dtype}
parallel_build(source, build_config, args.output_dir, workers,
args.log_level, model_cls, **kwargs)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Total time of building all engines: {t}')
if __name__ == '__main__':
main()