mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: RunningLeon <mnsheng@yeah.net> Co-authored-by: Tlntin <TlntinDeng01@Gmail.com> Co-authored-by: ZHENG, Zhen <zhengzhen.z@qq.com> Co-authored-by: Pham Van Ngoan <ngoanpham1196@gmail.com> Co-authored-by: Nathan Price <nathan@abridge.com> Co-authored-by: Tushar Goel <tushar.goel.ml@gmail.com> Co-authored-by: Mati <132419219+matichon-vultureprime@users.noreply.github.com>
171 lines
5.5 KiB
Plaintext
171 lines
5.5 KiB
Plaintext
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/runtime/utils/debugUtils.h"
|
|
|
|
#include "tensorrt_llm/common/cudaUtils.h"
|
|
#include "tensorrt_llm/common/memoryUtils.h"
|
|
#include <cfloat>
|
|
|
|
namespace
|
|
{
|
|
template <typename T>
|
|
__global__ void checkTensorNanKernel(T const* data, std::size_t size, int* foundNan)
|
|
{
|
|
auto tidx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
int32_t found = 0;
|
|
|
|
for (auto idx = tidx; idx < size; idx += blockDim.x * gridDim.x)
|
|
{
|
|
auto value = static_cast<float>(data[idx]);
|
|
if (isnan(value))
|
|
{
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
atomicCAS(foundNan, 0, found);
|
|
}
|
|
} // namespace
|
|
|
|
using namespace tensorrt_llm::runtime;
|
|
namespace tc = tensorrt_llm::common;
|
|
|
|
namespace tensorrt_llm::runtime::utils
|
|
{
|
|
|
|
template <typename T>
|
|
void invokeCheckTensorNanKernel(T const* data, std::size_t size, int* foundNan, cudaStream_t stream)
|
|
{
|
|
constexpr uint32_t kThreadsPerCta = 256;
|
|
checkTensorNanKernel<<<tc::ceilDiv(size, kThreadsPerCta), kThreadsPerCta, 0, stream>>>(data, size, foundNan);
|
|
}
|
|
|
|
template void invokeCheckTensorNanKernel(float const* data, std::size_t size, int* foundNan, cudaStream_t stream);
|
|
template void invokeCheckTensorNanKernel(half const* data, std::size_t size, int* foundNan, cudaStream_t stream);
|
|
template void invokeCheckTensorNanKernel(
|
|
__nv_bfloat16 const* data, std::size_t size, int* foundNan, cudaStream_t stream);
|
|
|
|
template <typename T>
|
|
void printLogitsKeyInfo(ITensor const& tensor, std::string const& infoStr)
|
|
{
|
|
auto const& shape = tensor.getShape();
|
|
auto const volume = ITensor::volume(shape);
|
|
|
|
BufferManager::ITensorPtr host{};
|
|
T const* hostData;
|
|
if (tensor.getMemoryType() == MemoryType::kGPU)
|
|
{
|
|
auto streamPtr = std::make_shared<CudaStream>();
|
|
BufferManager manager{streamPtr};
|
|
host = manager.copyFrom(tensor, MemoryType::kCPU);
|
|
streamPtr->synchronize();
|
|
hostData = bufferCast<T>(*host);
|
|
}
|
|
else
|
|
{
|
|
hostData = bufferCast<T>(tensor);
|
|
}
|
|
|
|
std::stringstream ss;
|
|
ss << infoStr;
|
|
ss << " Shape: " << shape;
|
|
ss << "; Top 5: ";
|
|
for (size_t ki = 0; ki < 5; ++ki)
|
|
{
|
|
ss << static_cast<float>(hostData[ki]) << ", ";
|
|
}
|
|
|
|
ss << " Last 5: ";
|
|
for (size_t ki = volume - 6; ki < volume; ++ki)
|
|
{
|
|
ss << static_cast<float>(hostData[ki]) << ", ";
|
|
}
|
|
|
|
// find max, min, avg
|
|
double mSum = 0.f;
|
|
float mMax = -FLT_MAX;
|
|
float mMin = FLT_MAX;
|
|
|
|
for (size_t ki = 0; ki < volume; ++ki)
|
|
{
|
|
float value = static_cast<float>(hostData[ki]);
|
|
mSum += value;
|
|
if (value > mMax)
|
|
{
|
|
mMax = value;
|
|
}
|
|
if (value < mMin)
|
|
{
|
|
mMin = value;
|
|
}
|
|
}
|
|
float mAvg = mSum / volume;
|
|
|
|
ss << " avg: " << mAvg << ", min: " << mMin << ", max: " << mMax << std::endl;
|
|
|
|
TLLM_LOG_TRACE(ss.str());
|
|
}
|
|
|
|
template void printLogitsKeyInfo<float>(ITensor const& tensor, std::string const& infoStr);
|
|
template void printLogitsKeyInfo<half>(ITensor const& tensor, std::string const& infoStr);
|
|
template void printLogitsKeyInfo<__nv_bfloat16>(ITensor const& tensor, std::string const& infoStr);
|
|
|
|
template <typename T>
|
|
bool tensorHasNan(ITensor const& tensor, BufferManager const& manager, std::string const& infoStr)
|
|
{
|
|
printLogitsKeyInfo<T>(tensor, infoStr);
|
|
auto foundNan = BufferManager::pinned(ITensor::makeShape({1}), nvinfer1::DataType::kINT32);
|
|
auto foundNanPtr = bufferCast<int32_t>(*foundNan);
|
|
foundNanPtr[0] = 0;
|
|
auto const size = tensor.getSize();
|
|
invokeCheckTensorNanKernel(bufferCast<T>(tensor), size, foundNanPtr, manager.getStream().get());
|
|
manager.getStream().synchronize();
|
|
return static_cast<bool>(foundNanPtr[0]);
|
|
}
|
|
|
|
template bool tensorHasNan<float>(ITensor const& tensor, BufferManager const& manager, std::string const& infoStr);
|
|
template bool tensorHasNan<half>(ITensor const& tensor, BufferManager const& manager, std::string const& infoStr);
|
|
template bool tensorHasNan<__nv_bfloat16>(
|
|
ITensor const& tensor, BufferManager const& manager, std::string const& infoStr);
|
|
|
|
bool tensorHasNan(
|
|
size_t M, size_t K, nvinfer1::DataType type, void const* data, cudaStream_t stream, std::string const& infoStr)
|
|
{
|
|
auto tensorView = ITensor::wrap(
|
|
const_cast<void*>(data), type, ITensor::makeShape({static_cast<int32_t>(M), static_cast<int32_t>(K)}));
|
|
auto manager = BufferManager(std::make_shared<CudaStream>(stream));
|
|
if (type == nvinfer1::DataType::kFLOAT)
|
|
{
|
|
return tensorHasNan<float>(*tensorView, manager, infoStr);
|
|
}
|
|
else if (type == nvinfer1::DataType::kHALF)
|
|
{
|
|
return tensorHasNan<half>(*tensorView, manager, infoStr);
|
|
}
|
|
else if (type == nvinfer1::DataType::kBF16)
|
|
{
|
|
return tensorHasNan<__nv_bfloat16>(*tensorView, manager, infoStr);
|
|
}
|
|
else
|
|
{
|
|
TLLM_THROW("Not supported type for Nan check");
|
|
}
|
|
}
|
|
|
|
} // namespace tensorrt_llm::runtime::utils
|