mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-22 19:52:38 +08:00
* Update TensorRT-LLM --------- Co-authored-by: IbrahimAmin <ibrahimamin532@gmail.com> Co-authored-by: Fabian Joswig <fjosw@users.noreply.github.com> Co-authored-by: Pzzzzz <hello-cd.plus@hotmail.com> Co-authored-by: CoderHam <hemant@cohere.com> Co-authored-by: Konstantin Lopuhin <kostia.lopuhin@gmail.com>
160 lines
4.6 KiB
C++
160 lines
4.6 KiB
C++
#pragma once
|
|
|
|
#include <gtest/gtest.h>
|
|
#include <list>
|
|
|
|
#include "tensorrt_llm/layers/lookaheadDecodingUtils.h"
|
|
#include "tensorrt_llm/runtime/runtimeKernels.h"
|
|
|
|
namespace tensorrt_llm::tests::layers
|
|
{
|
|
using namespace tensorrt_llm::runtime;
|
|
using TensorPtr = runtime::ITensor::SharedPtr;
|
|
|
|
//! Initialize a tensor with data from string @param str. Shape {str.size} by default.
|
|
TensorPtr initTensor(std::string str, std::optional<ITensor::Shape> shape = std::nullopt);
|
|
|
|
template <typename T>
|
|
class BufferLocation : BufferRange<T>
|
|
{
|
|
public:
|
|
using BufferRange<T>::begin;
|
|
|
|
BufferLocation(ITensor& t)
|
|
: BufferRange<T>(t)
|
|
, volumes(t.getShape().nbDims)
|
|
{
|
|
auto shape = t.getShape();
|
|
for (SizeType32 i = 0; i < shape.nbDims; i++)
|
|
{
|
|
SizeType32 volume = 1;
|
|
for (SizeType32 j = i + 1; j < shape.nbDims; j++)
|
|
{
|
|
volume *= shape.d[j];
|
|
}
|
|
volumes[i] = volume;
|
|
}
|
|
}
|
|
|
|
T& operator()(std::initializer_list<SizeType32> const& dims)
|
|
{
|
|
TLLM_CHECK(volumes.size() == dims.size());
|
|
SizeType32 offset = 0;
|
|
auto itd = dims.begin();
|
|
auto itv = volumes.begin();
|
|
for (; itd != dims.end() && itv != volumes.end(); itd++, itv++)
|
|
{
|
|
offset += (*itd) * (*itv);
|
|
}
|
|
return *(begin() + offset);
|
|
}
|
|
|
|
private:
|
|
std::vector<SizeType32> volumes;
|
|
};
|
|
|
|
//! Convert tokens to logits and vice versa according to a vocabulary.
|
|
class RandomTokenLogits
|
|
{
|
|
public:
|
|
RandomTokenLogits(TensorPtr vocab)
|
|
: mVocabulary(vocab)
|
|
{
|
|
}
|
|
|
|
RandomTokenLogits(std::string vocab)
|
|
: mVocabulary(initTensor(vocab))
|
|
{
|
|
}
|
|
|
|
TensorPtr tokenToLogits(TokenIdType token) const;
|
|
void tokenToLogits(TensorPtr logits, TokenIdType token) const;
|
|
|
|
TokenIdType logitsToToken(TensorPtr logits) const;
|
|
|
|
std::list<TensorPtr> stringToLogits(std::string tokens) const;
|
|
void stringToLogits(TensorPtr logits, std::string tokens) const;
|
|
void tensorToLogits(TensorPtr logits, TensorPtr tokens) const;
|
|
|
|
std::string logitsToString(std::list<TensorPtr> logits) const;
|
|
std::string logitsToString(TensorPtr logits) const;
|
|
TensorPtr logitsToTensor(TensorPtr logits) const;
|
|
|
|
SizeType32 getVocabSize() const;
|
|
//! @return the last token in mVocabulary as invalid token;
|
|
virtual TokenIdType getInvalidToken() const;
|
|
//! @return the second-to-last token in mVocabulary as end token;
|
|
virtual TokenIdType getEndToken() const;
|
|
|
|
private:
|
|
TensorPtr const mVocabulary;
|
|
};
|
|
|
|
//! vocabulary is ascii table from 0 to 127. tokenId == token.
|
|
class AsciiRandomTokenLogits : public RandomTokenLogits
|
|
{
|
|
public:
|
|
AsciiRandomTokenLogits()
|
|
: RandomTokenLogits(
|
|
[]()
|
|
{
|
|
auto vocab = BufferManager::cpu(ITensor::makeShape({128}), nvinfer1::DataType::kINT32);
|
|
auto vocabRange = BufferRange<TokenIdType>(*vocab);
|
|
TokenIdType token{0};
|
|
std::for_each(vocabRange.begin(), vocabRange.end(), [&token](auto& v) { v = token++; });
|
|
return vocab;
|
|
}())
|
|
{
|
|
}
|
|
|
|
virtual TokenIdType getInvalidToken() const
|
|
{
|
|
return static_cast<TokenIdType>('#');
|
|
}
|
|
|
|
virtual TokenIdType getEndToken() const
|
|
{
|
|
return static_cast<TokenIdType>('&');
|
|
}
|
|
};
|
|
|
|
//! random LLM to simulate functions of a real LLM.
|
|
class RandomLlm
|
|
{
|
|
public:
|
|
RandomLlm(std::shared_ptr<RandomTokenLogits> table, std::string oracle)
|
|
: mTable(table)
|
|
, mOracle(initTensor(oracle))
|
|
{
|
|
}
|
|
|
|
// simulate forward in a LLM.
|
|
void forward(TensorPtr output, TensorPtr const input, TensorPtr const position) const;
|
|
//! set inout[i] invalid if mask[i]==false;
|
|
void sampleByMask(TensorPtr inout, TensorPtr const mask) const;
|
|
//! @return true when @param script is a sub-string started from @param offset.
|
|
bool verify(SizeType32 const offset, TensorPtr const script) const;
|
|
|
|
//! foretell @param output tokens from @param input tokens and @param position ids.
|
|
//! It depends on different algorithms implementations.
|
|
virtual void foretell(TensorPtr output, TensorPtr const input, TensorPtr const position) const = 0;
|
|
|
|
protected:
|
|
std::shared_ptr<RandomTokenLogits> mTable;
|
|
TensorPtr mOracle;
|
|
};
|
|
|
|
//! a lookahead implementation for RandomLlm.
|
|
class LookaheadRandomLlm : public RandomLlm
|
|
{
|
|
public:
|
|
LookaheadRandomLlm(std::shared_ptr<RandomTokenLogits> table, std::string oracle)
|
|
: RandomLlm(table, oracle)
|
|
{
|
|
}
|
|
|
|
void foretell(TensorPtr output, TensorPtr const input, TensorPtr const position) const override;
|
|
};
|
|
|
|
} // namespace tensorrt_llm::tests::layers
|