TensorRT-LLMs/cpp/tests/resources/scripts/build_recurrentgemma_engines.py
2024-05-07 23:34:28 +08:00

132 lines
4.8 KiB
Python

#!/usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse as _arg
import os as _os
import pathlib as _pl
import platform as _pf
import sys as _sys
import typing as _tp
from build_engines_utils import run_command, wincopy
def build_engine(weight_dir: _pl.Path, ckpt_dir: _pl.Path, engine_dir: _pl.Path,
*args):
convert_args = [
_sys.executable, "examples/recurrentgemma/convert_checkpoint.py"
] + (['--model_dir', str(weight_dir)] if weight_dir else []) + [
'--output_dir',
str(ckpt_dir),
'--ckpt_type=hf',
'--dtype=float16',
]
run_command(convert_args)
build_args = ["trtllm-build"] + ['--checkpoint_dir',
str(ckpt_dir)] + [
'--output_dir',
str(engine_dir),
'--gpt_attention_plugin=float16',
'--paged_kv_cache=enable',
'--gemm_plugin=float16',
'--max_batch_size=8',
'--max_input_len=924',
'--max_output_len=100',
'--max_beam_width=1',
] + list(args)
run_command(build_args)
def build_engines(model_cache: _tp.Optional[str] = None):
resources_dir = _pl.Path(__file__).parent.resolve().parent
models_dir = resources_dir / 'models'
model_name = 'recurrentgemma-2b'
hf_dir = models_dir / model_name
# Clone or update the model directory without lfs
if model_cache:
print("Copy model from model_cache")
model_cache_dir = _pl.Path(model_cache) / 'recurrentgemma' / model_name
print(model_cache_dir)
assert (model_cache_dir.is_dir())
if _pf.system() == "Windows":
wincopy(source=str(model_cache_dir),
dest=model_name,
isdir=True,
cwd=models_dir)
else:
run_command(
["rsync", "-av", str(model_cache_dir), "."], cwd=models_dir)
else:
if not hf_dir.is_dir():
if _pf.system() == "Windows":
url_prefix = ""
else:
url_prefix = "file://"
model_url = "https://huggingface.co/google/recurrentgemma-2b"
run_command([
"git", "clone", model_url, "--single-branch", "--no-local",
model_name
],
cwd=models_dir,
env={
**_os.environ, "GIT_LFS_SKIP_SMUDGE": "1"
})
assert (hf_dir.is_dir())
# Download the model file
model_file_name = "*"
if not model_cache:
run_command(["git", "lfs", "pull", "--include", model_file_name],
cwd=hf_dir)
tp_size = 1
pp_size = 1
tp_pp_dir = f"tp{tp_size}-pp{pp_size}-gpu"
ckpt_dir = models_dir / 'rt_ckpt' / model_name
engine_dir = models_dir / 'rt_engine' / model_name
python_exe = _sys.executable
run_command([python_exe, "-m", "pip", "install", "transformers>=4.40.0"],
env=_os.environ,
timeout=300)
print("\nBuilding fp16-plugin-packed-paged engine")
build_engine(hf_dir, ckpt_dir / 'fp16-plugin-packed-paged' / tp_pp_dir,
engine_dir / 'fp16-plugin-packed-paged' / tp_pp_dir,
'--remove_input_padding=enable', '--paged_state=enable')
# Restore transformers version
run_command([python_exe, "-m", "pip", "uninstall", "transformers", "-y"],
env=_os.environ,
timeout=300)
run_command([python_exe, "-m", "pip", "install", "transformers==4.38.2"],
env=_os.environ,
timeout=300)
print("Done.")
if __name__ == "__main__":
parser = _arg.ArgumentParser()
parser.add_argument("--model_cache",
type=str,
help="Directory where models are stored")
build_engines(**vars(parser.parse_args()))