mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
88 lines
3.2 KiB
Python
Executable File
88 lines
3.2 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse as _arg
|
|
from pathlib import Path
|
|
|
|
import run
|
|
|
|
|
|
def generate_output(engine: str,
|
|
num_beams: int,
|
|
output_name: str,
|
|
max_output_len: int = 8):
|
|
|
|
tp_size = 1
|
|
pp_size = 1
|
|
model = 'gpt-j-6b'
|
|
resources_dir = Path(__file__).parent.resolve().parent
|
|
models_dir = resources_dir / 'models'
|
|
hf_dir = models_dir / model
|
|
tp_pp_dir = 'tp' + str(tp_size) + '-pp' + str(pp_size) + '-gpu/'
|
|
engine_dir = models_dir / 'rt_engine' / model / engine / tp_pp_dir
|
|
|
|
data_dir = resources_dir / 'data'
|
|
input_file = data_dir / 'input_tokens.npy'
|
|
model_data_dir = data_dir / model
|
|
if num_beams <= 1:
|
|
output_dir = model_data_dir / 'sampling'
|
|
else:
|
|
output_dir = model_data_dir / ('beam_search_' + str(num_beams))
|
|
|
|
output_name += '_tp' + str(tp_size) + '_pp' + str(pp_size)
|
|
|
|
args = run.parse_arguments([
|
|
'--engine_dir',
|
|
str(engine_dir), '--input_file',
|
|
str(input_file), '--tokenizer_dir',
|
|
str(hf_dir), '--output_npy',
|
|
str(output_dir / (output_name + '.npy')), '--output_csv',
|
|
str(output_dir / (output_name + '.csv')), '--max_output_len',
|
|
str(max_output_len), '--num_beams',
|
|
str(num_beams), '--use_py_session'
|
|
])
|
|
run.main(args)
|
|
|
|
|
|
def generate_outputs(only_fp8, num_beams):
|
|
if only_fp8 and num_beams == 1:
|
|
print('Generating GPT-J FP8-kv-cache outputs')
|
|
generate_output(engine='fp8-plugin',
|
|
num_beams=num_beams,
|
|
output_name='output_tokens_fp8_plugin')
|
|
elif not only_fp8:
|
|
print('Generating GPT-J FP16 outputs')
|
|
generate_output(engine='fp16-plugin',
|
|
num_beams=num_beams,
|
|
output_name='output_tokens_fp16_plugin')
|
|
generate_output(engine='fp16-plugin-packed',
|
|
num_beams=num_beams,
|
|
output_name='output_tokens_fp16_plugin_packed')
|
|
generate_output(engine='fp16-plugin-packed-paged',
|
|
num_beams=num_beams,
|
|
output_name='output_tokens_fp16_plugin_packed_paged')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = _arg.ArgumentParser()
|
|
parser.add_argument(
|
|
"--only_fp8",
|
|
action="store_true",
|
|
help="Generate data for only FP8 tests. Implemented for H100 runners.")
|
|
|
|
generate_outputs(**vars(parser.parse_args()), num_beams=1)
|
|
generate_outputs(**vars(parser.parse_args()), num_beams=2)
|