TensorRT-LLMs/examples/chatglm/convert_checkpoint.py
Kaiyu Xie f430a4b447
Update TensorRT-LLM (#1688)
* Update TensorRT-LLM

---------

Co-authored-by: IbrahimAmin <ibrahimamin532@gmail.com>
Co-authored-by: Fabian Joswig <fjosw@users.noreply.github.com>
Co-authored-by: Pzzzzz <hello-cd.plus@hotmail.com>
Co-authored-by: CoderHam <hemant@cohere.com>
Co-authored-by: Konstantin Lopuhin <kostia.lopuhin@gmail.com>
2024-05-28 20:07:49 +08:00

1185 lines
47 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import argparse
import functools
import json
import os
import time
import traceback
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import Dict, Optional, Tuple
import numpy as np
import safetensors
import torch
from tqdm import tqdm
from transformers import AutoConfig, AutoModel, AutoTokenizer
import tensorrt_llm
from tensorrt_llm._utils import pad_vocab_size
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models.convert_utils import load_calib_dataset
from tensorrt_llm.quantization import QuantAlgo
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, default=None)
parser.add_argument(
'--chatglm_version',
default=None,
choices=[None, 'glm', 'chatglm', 'chatglm2', 'chatglm3'],
help=
"By default the script will try to infer the chatglm_version from model_dir. "
"Or users may overwrite chatglm_version by explicitly passing the version."
)
parser.add_argument('--tp_size',
type=int,
default=1,
help='N-way tensor parallelism size')
parser.add_argument('--pp_size',
type=int,
default=1,
help='N-way pipeline parallelism size')
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float32', 'bfloat16', 'float16'])
parser.add_argument('--logits_dtype',
type=str,
default='float32',
choices=['float16', 'float32'])
parser.add_argument(
'--use_parallel_embedding',
action="store_true",
default=False,
help=
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
)
parser.add_argument(
'--embedding_sharding_dim',
type=int,
default=0,
choices=[0, 1],
help=
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
'To shard it along hidden dimension, set embedding_sharding_dim=1'
'Note: embedding sharing is only enabled when embedding_sharding_dim = 0'
)
parser.add_argument(
'--use_embedding_sharing',
action="store_true",
default=False,
help=
'Try to reduce the engine size by sharing the embedding lookup table between two layers.'
'Note: the flag might not take effect when the criteria are not met.')
parser.add_argument(
'--use_weight_only',
default=False,
action="store_true",
help='Quantize weights for the various GEMMs to INT4/INT8.'
'See --weight_only_precision to set the precision')
parser.add_argument(
'--weight_only_precision',
const='int8',
type=str,
nargs='?',
default='int8',
choices=['int8', 'int4'],
help=
'Define the precision for the weights when using weight-only quantization.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument(
'--calib_dataset',
type=str,
default='cnn_dailymail',
help=
"The huggingface dataset name or the local directory of the dataset for calibration."
)
parser.add_argument(
"--smoothquant",
"-sq",
type=float,
default=None,
help="Set the α parameter (see https://arxiv.org/pdf/2211.10438.pdf)"
" to Smoothquant the model, and output int8 weights."
" A good first try is 0.5. Must be in [0, 1]")
parser.add_argument(
'--per_channel',
action="store_true",
default=False,
help=
'By default, we use a single static scaling factor for the GEMM\'s result. '
'per_channel instead uses a different static scaling factor for each channel. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
'--per_token',
action="store_true",
default=False,
help=
'By default, we use a single static scaling factor to scale activations in the int8 range. '
'per_token chooses at run time, and for each token, a custom scaling factor. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
'--int8_kv_cache',
default=False,
action="store_true",
help=
'By default, we use dtype for KV cache. int8_kv_cache chooses int8 quantization for KV'
)
parser.add_argument('--output_dir',
type=str,
default='tllm_checkpoint',
help='The path to save the TensorRT-LLM checkpoint')
parser.add_argument(
'--workers',
type=int,
default=1,
help='The number of workers for converting checkpoint in parallel')
args = parser.parse_args()
return args
def load_chatglm_config(model_dir: str,
chatglm_version: Optional[str] = None) -> AutoConfig:
config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True)
if chatglm_version is None:
print("Inferring chatglm version from path...")
for v in ['chatglm3', 'chatglm2', 'chatglm', 'glm']:
if v in config._name_or_path:
chatglm_version = v
break
assert chatglm_version in ['glm', 'chatglm', 'chatglm2', 'chatglm3']
print(f"Chatglm version: {chatglm_version}")
if chatglm_version == 'glm':
config.num_kv_heads = config.num_attention_heads
config.ffn_hidden_size = config.hidden_size * 4
config.hidden_act = 'gelu'
config.layernorm_epsilon = 1e-5
config.max_position_embeddings = config.max_sequence_length
config.add_bias_linear = True
config.add_qkv_bias = True
config.apply_query_key_layer_scaling = False
config.apply_residual_connection_post_layernorm = False
config.rmsnorm = False
config.rope_ratio = 1.0
elif chatglm_version == 'chatglm':
config.num_kv_heads = config.num_attention_heads
config.ffn_hidden_size = config.inner_hidden_size
config.hidden_act = 'gelu'
config.max_position_embeddings = config.max_sequence_length
config.add_bias_linear = True
config.add_qkv_bias = True
config.apply_query_key_layer_scaling = False
config.apply_residual_connection_post_layernorm = False
config.rmsnorm = False
config.rope_ratio = 1.0
else:
config.vocab_size = config.padded_vocab_size
config.num_kv_heads = config.multi_query_group_num
config.hidden_act = 'swiglu'
config.max_position_embeddings = config.seq_length
config.rmsnorm = getattr(config, 'rmsnorm', 1.0)
config.rope_ratio = getattr(config, 'rope_ratio', 1.0)
return config, chatglm_version
def split(weight: torch.Tensor,
tp_size: int,
rank: int = 0,
dim: int = 0) -> torch.Tensor:
if tp_size == 1:
return weight
elif weight.ndim == 1:
return torch.chunk(weight, tp_size)[rank].contiguous()
else:
return torch.chunk(weight, tp_size, dim=dim)[rank].contiguous()
def tile_kv_weight_bias(v: torch.Tensor, kv_num_head: int, tp_size: int):
head_size = v.shape[0] // kv_num_head
reps = tp_size // kv_num_head
if v.ndim == 1:
v = v.reshape(kv_num_head, head_size)[:, None, :]
v = v.expand(kv_num_head, reps, head_size).reshape(-1).clone()
else:
hidden_size = v.shape[1]
v = v.reshape(kv_num_head, head_size, hidden_size)[:, None, :, :]
v = v.expand(kv_num_head, reps, head_size,
hidden_size).reshape(-1, hidden_size).clone()
return v
def split_qkv(v: torch.Tensor, tp_size: int, rank: int, hidden_size: int,
num_heads: int, num_kv_heads: int):
head_size = hidden_size // num_heads
if tp_size == 1:
return v
assert v.shape[0] == hidden_size + head_size * num_kv_heads * 2
query = v[:hidden_size]
key = v[hidden_size:hidden_size + head_size * num_kv_heads]
value = v[hidden_size + head_size * num_kv_heads:hidden_size +
head_size * num_kv_heads * 2]
if num_kv_heads < tp_size:
key = tile_kv_weight_bias(key, num_kv_heads, tp_size)
value = tile_kv_weight_bias(value, num_kv_heads, tp_size)
assert (key.shape[0] % (tp_size * head_size)) == 0
assert (value.shape[0] % (tp_size * head_size)) == 0
q_tmp = torch.chunk(query, tp_size, dim=0)[rank]
k_tmp = torch.chunk(key, tp_size, dim=0)[rank]
v_tmp = torch.chunk(value, tp_size, dim=0)[rank]
return torch.concatenate([q_tmp, k_tmp, v_tmp], dim=0).contiguous()
def split_embedding(
param: torch.Tensor,
tp_size: int,
tp_rank: int,
use_parallel_embedding: bool = False,
sharding_dim: int = 0,
) -> torch.Tensor:
if param is None:
return None
if not use_parallel_embedding:
return param
vocab_size, hidden_size = param.size()
if sharding_dim == 0:
if vocab_size % tp_size != 0:
vocab_size_padded = pad_vocab_size(vocab_size, tp_size)
pad_width = vocab_size_padded - vocab_size
param = torch.nn.functional.pad(param, (0, 0, 0, pad_width),
value=0)
else:
assert hidden_size % tp_size == 0
return split(param, tp_size, tp_rank, dim=sharding_dim)
def get_weight(params: Dict[str, torch.Tensor], prefix: str,
dtype: torch.dtype) -> torch.Tensor:
if f'{prefix}.weight' not in params:
return None
return params[f'{prefix}.weight'].to(dtype).detach().cpu()
def get_bias(params: Dict[str, torch.Tensor], prefix: str,
dtype: torch.dtype) -> torch.Tensor:
if f'{prefix}.bias' not in params:
return None
return params[f'{prefix}.bias'].to(dtype).detach().cpu()
def get_weight_and_bias(params: Dict[str, torch.Tensor], prefix: str,
dtype: torch.dtype) -> Tuple[torch.Tensor]:
return get_weight(params, prefix, dtype), get_bias(params, prefix, dtype)
def swap_and_split_mlp(weight: torch.Tensor,
tp_size: int,
tp_rank: int,
dim: int = 0) -> torch.Tensor:
"""Swap the positions of gate and fc weights, and split weights for tensor parallel.
"""
gate_weight, fc_weight = torch.chunk(weight, 2, dim=dim)
fc_w = split(fc_weight, tp_size, tp_rank, dim=dim)
gate_w = split(gate_weight, tp_size, tp_rank, dim=dim)
return torch.cat([fc_w, gate_w], dim=dim).contiguous()
def get_tllm_linear_weight(
weight: torch.Tensor,
prefix: str,
bias: Optional[torch.Tensor] = None,
use_weight_only: bool = False,
plugin_weight_only_quant_type: torch.dtype = torch.int8
) -> Dict[str, torch.Tensor]:
results = {}
if use_weight_only:
v = weight.t().contiguous()
processed_torch_weights, torch_weight_scales = \
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
v, plugin_weight_only_quant_type)
results[f'{prefix}.weight'] = processed_torch_weights
results[f'{prefix}.per_channel_scale'] = torch_weight_scales
else:
results[f'{prefix}.weight'] = weight.contiguous()
if bias is not None:
results[f'{prefix}.bias'] = bias
return results
@torch.no_grad()
def apply_smoothing(
scales,
gemm_weights,
norm_weights=None,
norm_bias=None,
dtype=torch.float32,
norm_1p=False,
):
if not isinstance(gemm_weights, list):
gemm_weights = [gemm_weights]
if norm_weights is not None:
assert norm_weights.numel() == scales.numel()
norm_weights.div_(scales).to(dtype)
if norm_bias is not None:
assert norm_bias.numel() == scales.numel()
norm_bias.div_(scales).to(dtype)
if norm_1p:
norm_weights += (1 / scales) - 1
for gemm in gemm_weights:
gemm.mul_(scales.view(1, -1)).to(dtype)
@torch.no_grad()
def smooth_gemm(
gemm_weights,
act_scales,
norm_weights=None,
norm_bias=None,
alpha=0.5,
weight_scales=None,
):
if not isinstance(gemm_weights, list):
gemm_weights = [gemm_weights]
orig_dtype = gemm_weights[0].dtype
for gemm in gemm_weights:
# gemm_weights are expected to be transposed
assert gemm.shape[1] == act_scales.numel()
if weight_scales is None:
weight_scales = torch.cat(
[gemm.abs().max(dim=0, keepdim=True)[0] for gemm in gemm_weights],
dim=0)
weight_scales = weight_scales.max(dim=0)[0]
weight_scales.to(float).clamp(min=1e-5)
scales = (act_scales.to(gemm_weights[0].device).to(float).pow(alpha) /
weight_scales.pow(1 - alpha)).clamp(min=1e-5)
apply_smoothing(scales, gemm_weights, norm_weights, norm_bias, orig_dtype)
return scales
@torch.no_grad()
def capture_activation_range(
model,
tokenizer,
dataset,
num_samples=64,
seq_len=512,
):
model.eval()
device = next(model.parameters()).device
scales = defaultdict(lambda: {"x": None, "y": None, "w": None})
def stat_tensor(name, tensor, key):
tensor = tensor.view(-1, tensor.shape[-1]).detach()
comming_max = tensor.abs().max(dim=0)[0].float()
if scales[name][key] is None:
scales[name][key] = comming_max
else:
scales[name][key] = torch.max(scales[name][key], comming_max)
def stat_input_hook(m, x, y, name):
if isinstance(x, tuple):
x = x[0]
stat_tensor(name, x, "x")
stat_tensor(name, y, "y")
if scales[name]["w"] is None:
scales[name]["w"] = m.weight.abs().clip(1e-8, None).max(dim=1)[0]
hooks = []
for name, m in model.named_modules():
if isinstance(m, torch.nn.Linear):
hooks.append(
m.register_forward_hook(
functools.partial(stat_input_hook, name=name)))
for i in tqdm(range(num_samples), desc="Calibration"):
input_ids = tokenizer(
dataset[i],
return_tensors="pt",
max_length=seq_len,
truncation=True,
)
model(input_ids.input_ids.to(device))
for h in hooks:
h.remove()
return scales
def generate_int8(weights, act_range, is_qkv=False, multi_query_mode=True):
"""
This function has two purposes:
- compute quantized weights, scaled either per-tensor or per-column
- compute scaling factors
Depending on the GEMM API (CUTLASS/CUBLAS) the required scaling factors differ.
CUTLASS uses two sets of scaling factors. One for the activation X, one for the weight W.
CUBLAS only has one (we can't do per-row scaling). So we must provide pre-multiplied scaling factor.
Here is the list of what we need (T means per-tensor, C per-column):
- scale_x_orig_quant puts fp activation into the quantized range (i.e. [-128, 127], for int8). Used before the GEMM. (T)
- scale_y_quant_orig puts quantized activation into the fp range. Used if the GEMM outputs int8. (T)
- scale_w_quant_orig puts weights from quant range to fp range (used with CUTLASS) (T, C)
- scale_y_accum_quant puts the GEMM result (XW) from accumulation range (int32)
to quant range (int8) (used for CUBLAS) (T, C)
Note that we don't do anything special about row-parallel GEMM. Theoretically, we could have per-GPU scaling factors too,
but then the model would change depending on the number of GPUs used.
For QKV projection, the behavior is special. Even if we have a single matrix to perform QKV projection, we consider it
as three different matrices: Q, K, and V. So per-tensor actually means one scaling factor for each Q, K and V.
For our GEMM implementation to respect this behavior, we use per-column mode and replicate values along columns.
"""
# For ChatGLM2/3-6B models (num_kv_head == 2), we regard multi_query_mode == True to reuse code from gpt and baichuan examples.
if is_qkv and multi_query_mode:
hidden_dim, local_dim = weights.shape
kv_dim = (local_dim - hidden_dim) // 2
scale_w_q = act_range["w"][0:hidden_dim]
scale_w_k = act_range["w"][hidden_dim:hidden_dim + kv_dim]
scale_w_v = act_range["w"][-kv_dim:]
scale_w_qkv_t = torch.concat([
scale_w_q.max(dim=0, keepdim=True)[0],
scale_w_k.max(dim=0, keepdim=True)[0],
scale_w_v.max(dim=0, keepdim=True)[0]
])
scale_w_orig_quant_t = 127. / scale_w_qkv_t.cpu().numpy().astype(
np.float32)
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy().astype(
np.float32)
elif is_qkv and not multi_query_mode:
scale_w_orig_quant_t = 127. / act_range["w"].reshape(3, -1).max(
dim=-1, keepdims=True)[0].cpu().numpy().astype(np.float32)
scale_w_orig_quant_c = 127. / act_range["w"].reshape(
3, -1).cpu().numpy().astype(np.float32)
else:
scale_w_orig_quant_t = 127. / act_range["w"].max().cpu().numpy().astype(
np.float32)
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy().astype(
np.float32)
scale_w_quant_orig_t = 1.0 / scale_w_orig_quant_t
scale_w_quant_orig_c = 1.0 / scale_w_orig_quant_c
# compute the rest of needed scaling factors
scale_x_orig_quant_t = np.array(127. / act_range["x"].max().item()).astype(
np.float32)
scale_y_orig_quant_t = np.array(127. / act_range["y"].max().item()).astype(
np.float32)
scale_y_quant_orig_t = np.array(act_range["y"].max().item() / 127.).astype(
np.float32)
scale_y_accum_quant_t = scale_y_orig_quant_t / (scale_x_orig_quant_t *
scale_w_orig_quant_t)
scale_y_accum_quant_c = scale_y_orig_quant_t / (scale_x_orig_quant_t *
scale_w_orig_quant_c)
if is_qkv and not multi_query_mode:
scale_y_accum_quant_t = np.broadcast_to(scale_y_accum_quant_t,
scale_w_orig_quant_c.shape)
scale_w_quant_orig_t = np.broadcast_to(scale_w_quant_orig_t,
scale_w_orig_quant_c.shape)
if is_qkv and multi_query_mode:
scale_q_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[0],
scale_w_q.shape)
scale_k_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[1],
scale_w_k.shape)
scale_v_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[2],
scale_w_v.shape)
scale_y_accum_quant_t = np.concatenate(
[scale_q_y_accum_t, scale_k_y_accum_t, scale_v_y_accum_t])
scale_w_quant_orig_t = np.concatenate([
np.broadcast_to(scale_w_quant_orig_t[0], scale_w_q.shape),
np.broadcast_to(scale_w_quant_orig_t[1], scale_w_k.shape),
np.broadcast_to(scale_w_quant_orig_t[2], scale_w_v.shape)
])
to_i8 = lambda x: x.round().clip(-127, 127).astype(np.int8)
if is_qkv and multi_query_mode:
scale_w_orig_quant_t_expand = np.ones([weights.shape[-1]])
scale_w_orig_quant_t_expand[:hidden_dim] = scale_w_orig_quant_t[0]
scale_w_orig_quant_t_expand[hidden_dim:hidden_dim +
kv_dim] = scale_w_orig_quant_t[1]
scale_w_orig_quant_t_expand[-kv_dim:] = scale_w_orig_quant_t[2]
weight_int8 = to_i8(weights * scale_w_orig_quant_t_expand)
else:
weight_int8 = to_i8(weights * scale_w_orig_quant_t)
return {
"weight.int8": weight_int8,
"weight.int8.col": to_i8(weights * scale_w_orig_quant_c),
"scale_x_orig_quant": scale_x_orig_quant_t.astype(np.float32),
"scale_w_quant_orig": scale_w_quant_orig_t.astype(np.float32),
"scale_w_quant_orig.col": scale_w_quant_orig_c.astype(np.float32),
"scale_y_accum_quant": scale_y_accum_quant_t.astype(np.float32),
"scale_y_accum_quant.col": scale_y_accum_quant_c.astype(np.float32),
"scale_y_quant_orig": scale_y_quant_orig_t.astype(np.float32),
}
@torch.no_grad()
def smooth_chatglm_model(
model,
act_range,
alpha,
model_smoother,
):
for name, module in model.named_modules():
if not module._get_name() == "GLMBlock":
continue
# QKV multiplication weight
layer_name = name + '.self_attention.query_key_value'
print(f'Smoothing module: {layer_name}')
weight = module.self_attention.query_key_value.weight
smoother = smooth_gemm(
weight,
act_range[layer_name]["x"],
module.input_layernorm.weight,
None,
alpha,
)
act_range[layer_name]["x"] = act_range[layer_name]["x"] / smoother
act_range[layer_name]["w"] = weight.abs().max(dim=1)[0]
# Dense multiplication weight
layer_name = name + ".self_attention.dense"
print(f'Smoothing module: {layer_name}')
weight = module.self_attention.dense.weight
smoother = smooth_gemm(
weight,
act_range[layer_name]["x"],
None,
None,
alpha,
)
model_smoother[layer_name] = smoother.float()
act_range[layer_name]["x"] = act_range[layer_name]["x"] / smoother
act_range[layer_name]["w"] = weight.abs().max(dim=1)[0]
# Multilayer perceptron h -> 4h weight
layer_name = name + ".mlp.dense_h_to_4h"
print(f'Smoothing module: {layer_name}')
weight = module.mlp.dense_h_to_4h.weight
smoother = smooth_gemm(
weight,
act_range[layer_name]["x"],
module.post_attention_layernorm.weight,
None,
alpha,
)
act_range[layer_name]["x"] = act_range[layer_name]["x"] / smoother
act_range[layer_name]["w"] = weight.abs().max(dim=1)[0]
# Multilayer perceptron 4h -> h weight
layer_name = name + ".mlp.dense_4h_to_h"
print(f'Smoothing module: {layer_name}')
weight = module.mlp.dense_4h_to_h.weight
smoother = smooth_gemm(
weight,
act_range[layer_name]["x"],
None,
None,
alpha,
)
model_smoother[layer_name] = smoother.float()
act_range[layer_name]["x"] = act_range[layer_name]["x"] / smoother
act_range[layer_name]["w"] = weight.abs().max(dim=1)[0]
def get_tllm_linear_sq_weight(vals,
prefix,
shape,
is_qkv=False,
per_token=False,
per_channel=False,
last_prefix=None,
smoother_value=None,
smoother_shape=None):
results = {}
col_shape = shape if (is_qkv or per_channel) else [1, 1]
if per_token:
if per_channel:
original_weights = np.array(vals["weight.int8.col"])
else:
original_weights = np.array(vals["weight.int8"])
cur_weights = original_weights
if is_qkv:
hidden_dim = cur_weights.shape[0]
cur_weights = cur_weights.reshape(hidden_dim, -1)
results[prefix +
'weight'] = torch.from_numpy(cur_weights).t().contiguous()
if smoother_value is None:
results[last_prefix] = torch.from_numpy(
np.array([1.0], dtype=np.float16))
if per_channel:
cur_per_channel_value = vals["scale_w_quant_orig.col"]
else:
cur_per_channel_value = vals["scale_w_quant_orig"]
results[prefix + 'per_channel_scale'] = torch.from_numpy(
np.array(cur_per_channel_value,
dtype=np.float32).reshape(col_shape)).contiguous()
else:
if per_channel:
original_weights = np.array(vals["weight.int8.col"])
else:
original_weights = np.array(vals["weight.int8"])
cur_weights = original_weights
if is_qkv:
hidden_dim = cur_weights.shape[0]
cur_weights = cur_weights.reshape(hidden_dim, -1)
results[prefix +
'weight'] = torch.from_numpy(cur_weights).t().contiguous()
if per_channel:
cur_per_channel_value = vals["scale_y_accum_quant.col"]
else:
cur_per_channel_value = vals["scale_y_accum_quant"]
results[prefix + 'per_channel_scale'] = torch.from_numpy(
np.array([cur_per_channel_value],
dtype=np.float32).reshape(col_shape)).contiguous()
results[last_prefix] = torch.from_numpy(
np.array([vals['scale_x_orig_quant']],
dtype=np.float32)).contiguous()
results[prefix + 'act_scale'] = torch.from_numpy(
np.array([[vals["scale_y_quant_orig"]]],
dtype=np.float32)).contiguous()
if smoother_value is not None:
results[prefix + 'smoother'] = smoother_value.reshape(
smoother_shape).contiguous().to(torch.float32)
return results
def convert_hf_chatglm(hf_model: AutoModel,
hf_config: AutoConfig,
chatglm_version: str,
mapping: Mapping,
dtype: str = 'float32',
use_parallel_embedding: bool = False,
sharding_dim: int = 0,
share_embedding_table: bool = False,
use_weight_only: bool = False,
plugin_weight_only_quant_type: str = 'int8',
use_smooth_quant: bool = False,
per_channel=False,
per_token=False,
int8_kv_cache=False,
act_range=None,
smoother=None):
weights = {}
tik = time.time()
model_params = dict(hf_model.named_parameters())
dtype = getattr(torch, dtype)
num_attention_heads = hf_config.num_attention_heads
hidden_size = hf_config.hidden_size
hf_config.vocab_size
num_kv_heads = getattr(hf_config, 'num_kv_heads', num_attention_heads)
num_hidden_layers = hf_config.num_layers
layers_range = mapping.pp_layers(num_hidden_layers)
for l in layers_range:
if chatglm_version in ['glm', 'chatglm']:
prefix = f'transformer.layers.{l}'
elif chatglm_version in ['chatglm2', 'chatglm3']:
prefix = f'transformer.encoder.layers.{l}'
tllm_prex = f'transformer.layers.{l-layers_range[0]}'
# Attention QKV
if chatglm_version in ['glm', 'chatglm']:
qkv_weight, qkv_bias = get_weight_and_bias(
model_params, f'{prefix}.attention.query_key_value', dtype)
qkv_act_range = act_range.get(f'{prefix}.attention.query_key_value')
elif chatglm_version in ['chatglm2', 'chatglm3']:
qkv_weight, qkv_bias = get_weight_and_bias(
model_params, f'{prefix}.self_attention.query_key_value', dtype)
qkv_act_range = act_range.get(
f'{prefix}.self_attention.query_key_value')
if use_smooth_quant:
qkv_vals_int8 = generate_int8(qkv_weight.t().numpy(),
qkv_act_range,
is_qkv=True,
multi_query_mode=True)
weights.update(
get_tllm_linear_sq_weight(
vals=qkv_vals_int8,
prefix=f'{tllm_prex}.attention.qkv.',
shape=[1, qkv_weight.size(0)],
is_qkv=True,
per_token=per_token,
per_channel=per_channel,
last_prefix=f'{tllm_prex}.input_layernorm.scale_to_int',
smoother_value=None,
smoother_shape=None))
if qkv_bias is not None:
qkv_b = split_qkv(qkv_bias,
mapping.tp_size,
mapping.tp_rank,
hidden_size,
num_attention_heads,
num_kv_heads=num_kv_heads)
weights[f'{tllm_prex}.attention.qkv.bias'] = qkv_b
else:
qkv_w = split_qkv(qkv_weight,
mapping.tp_size,
mapping.tp_rank,
hidden_size,
num_attention_heads,
num_kv_heads=num_kv_heads)
if qkv_bias is None:
qkv_b = None
else:
qkv_b = split_qkv(qkv_bias,
mapping.tp_size,
mapping.tp_rank,
hidden_size,
num_attention_heads,
num_kv_heads=num_kv_heads)
weights.update(
get_tllm_linear_weight(qkv_w, f'{tllm_prex}.attention.qkv',
qkv_b, use_weight_only,
plugin_weight_only_quant_type))
if int8_kv_cache:
qkv_vals_int8 = generate_int8(qkv_weight.t().numpy(),
qkv_act_range,
is_qkv=True,
multi_query_mode=True)
weights[
f'{tllm_prex}.attention.kv_cache_scaling_factor'] = torch.from_numpy(
np.array([qkv_vals_int8['scale_y_quant_orig']],
dtype=np.float32)).contiguous()
# Attention dense
if chatglm_version in ['glm', 'chatglm']:
attn_dense_weight, attn_dense_bias = get_weight_and_bias(
model_params, f'{prefix}.attention.dense', dtype)
dense_act_range = act_range.get(f'{prefix}.attention.dense')
dense_smoother = smoother.get(f'{prefix}.attention.dense')
else:
attn_dense_weight, attn_dense_bias = get_weight_and_bias(
model_params, f'{prefix}.self_attention.dense', dtype)
dense_act_range = act_range.get(f'{prefix}.self_attention.dense')
dense_smoother = smoother.get(f'{prefix}.self_attention.dense')
if use_smooth_quant:
dense_vals_int8 = generate_int8(attn_dense_weight.t().numpy(),
dense_act_range,
is_qkv=False,
multi_query_mode=True)
weights.update(
get_tllm_linear_sq_weight(
vals=dense_vals_int8,
prefix=f'{tllm_prex}.attention.dense.',
shape=[1, hidden_size],
is_qkv=False,
per_token=per_token,
per_channel=per_channel,
last_prefix=
f'{tllm_prex}.attention.quantization_scaling_factor',
smoother_value=dense_smoother,
smoother_shape=[1, hidden_size]))
if attn_dense_bias is not None:
weights[f'{tllm_prex}.attention.dense.bias'] = attn_dense_bias
else:
attn_dense_w = split(attn_dense_weight,
mapping.tp_size,
mapping.tp_rank,
dim=1)
weights.update(
get_tllm_linear_weight(attn_dense_w,
f'{tllm_prex}.attention.dense',
attn_dense_bias, use_weight_only,
plugin_weight_only_quant_type))
# MLP FC
mlp_fc_weight, mlp_fc_bias = get_weight_and_bias(
model_params, f'{prefix}.mlp.dense_h_to_4h', dtype)
if use_smooth_quant:
fc_act_range = act_range.get(f'{prefix}.mlp.dense_h_to_4h')
fc_vals_int8 = generate_int8(mlp_fc_weight.t().numpy(),
fc_act_range,
is_qkv=False,
multi_query_mode=True)
cur_weights = get_tllm_linear_sq_weight(
vals=fc_vals_int8,
prefix=f'{tllm_prex}.mlp.fc.',
shape=[1, mlp_fc_weight.size(0)],
is_qkv=False,
per_token=per_token,
per_channel=per_channel,
last_prefix=f'{tllm_prex}.post_layernorm.scale_to_int',
smoother_value=None,
smoother_shape=None,
)
cur_weights[f'{tllm_prex}.mlp.fc.weight'] = swap_and_split_mlp(
cur_weights[f'{tllm_prex}.mlp.fc.weight'],
mapping.tp_size,
mapping.tp_rank,
dim=0,
)
if per_channel:
cur_weights[
f'{tllm_prex}.mlp.fc.per_channel_scale'] = swap_and_split_mlp(
cur_weights[f'{tllm_prex}.mlp.fc.per_channel_scale'],
mapping.tp_size,
mapping.tp_rank,
dim=1,
)
weights.update(cur_weights)
if chatglm_version in ['glm', 'chatglm']:
if mlp_fc_bias is not None:
mlp_fc_b = split(mlp_fc_bias,
mapping.tp_size,
mapping.tp_rank,
dim=0)
weights[f'{tllm_prex}.mlp.fc.bias'] = mlp_fc_b
elif chatglm_version in ['chatglm2', 'chatglm3']:
if mlp_fc_bias is not None:
mlp_fc_b = swap_and_split_mlp(mlp_fc_bias, mapping.tp_size,
mapping.tp_rank)
weights[f'{tllm_prex}.mlp.fc.bias'] = mlp_fc_b
else:
if chatglm_version in ['glm', 'chatglm']:
mlp_fc_w = split(mlp_fc_weight,
mapping.tp_size,
mapping.tp_rank,
dim=0)
if mlp_fc_bias is None:
mlp_fc_b = None
else:
mlp_fc_b = split(mlp_fc_bias,
mapping.tp_size,
mapping.tp_rank,
dim=0)
elif chatglm_version in ['chatglm2', 'chatglm3']:
mlp_fc_w = swap_and_split_mlp(mlp_fc_weight, mapping.tp_size,
mapping.tp_rank)
if mlp_fc_bias is None:
mlp_fc_b = None
else:
mlp_fc_b = swap_and_split_mlp(mlp_fc_bias, mapping.tp_size,
mapping.tp_rank)
weights.update(
get_tllm_linear_weight(mlp_fc_w, f'{tllm_prex}.mlp.fc',
mlp_fc_b, use_weight_only,
plugin_weight_only_quant_type))
# MLP Proj
mlp_proj_weight, mlp_proj_bias = get_weight_and_bias(
model_params, f'{prefix}.mlp.dense_4h_to_h', dtype)
if use_smooth_quant:
proj_act_range = act_range.get(f'{prefix}.mlp.dense_4h_to_h')
proj_smoother = smoother.get(f'{prefix}.mlp.dense_4h_to_h')
proj_vals_int8 = generate_int8(mlp_proj_weight.t().numpy(),
proj_act_range,
is_qkv=False,
multi_query_mode=True)
weights.update(
get_tllm_linear_sq_weight(
vals=proj_vals_int8,
prefix=f'{tllm_prex}.mlp.proj.',
shape=[1, hidden_size],
is_qkv=False,
per_token=per_token,
per_channel=per_channel,
last_prefix=f'{tllm_prex}.mlp.quantization_scaling_factor',
smoother_value=proj_smoother,
smoother_shape=[1, hf_config.ffn_hidden_size]))
if mlp_proj_bias is not None:
weights[f'{tllm_prex}.mlp.proj.bias'] = mlp_proj_bias
else:
mlp_proj_w = split(mlp_proj_weight,
mapping.tp_size,
mapping.tp_rank,
dim=1)
weights.update(
get_tllm_linear_weight(mlp_proj_w, f'{tllm_prex}.mlp.proj',
mlp_proj_bias, use_weight_only,
plugin_weight_only_quant_type))
input_ln_weight, input_ln_bias = get_weight_and_bias(
model_params, f'{prefix}.input_layernorm', dtype)
weights[f'{tllm_prex}.input_layernorm.weight'] = input_ln_weight
if input_ln_bias is not None:
weights[f'{tllm_prex}.input_layernorm.bias'] = input_ln_bias
post_ln_weight, post_ln_bias = get_weight_and_bias(
model_params, f'{prefix}.post_attention_layernorm', dtype)
weights[f'{tllm_prex}.post_layernorm.weight'] = post_ln_weight
if post_ln_bias is not None:
weights[f'{tllm_prex}.post_layernorm.bias'] = post_ln_bias
if mapping.is_first_pp_rank():
if chatglm_version == 'glm':
embed_w = get_weight(model_params, 'word_embeddings', dtype)
pos_embed_w = get_weight(model_params,
'transformer.position_embeddings', dtype)
weights['transformer.position_embedding.weight'] = split_embedding(
pos_embed_w,
tp_size=mapping.tp_size,
tp_rank=mapping.tp_rank,
use_parallel_embedding=use_parallel_embedding,
sharding_dim=sharding_dim)
block_embed_w = get_weight(model_params,
'transformer.block_position_embeddings',
dtype)
weights['transformer.block_embedding.weight'] = split_embedding(
block_embed_w,
tp_size=mapping.tp_size,
tp_rank=mapping.tp_rank,
use_parallel_embedding=use_parallel_embedding,
sharding_dim=sharding_dim)
elif chatglm_version == 'chatglm':
embed_w = get_weight(model_params, 'transformer.word_embeddings',
dtype)
elif chatglm_version in ['chatglm2', 'chatglm3']:
embed_w = get_weight(model_params,
'transformer.embedding.word_embeddings', dtype)
weights['transformer.vocab_embedding.weight'] = split_embedding(
embed_w,
tp_size=mapping.tp_size,
tp_rank=mapping.tp_rank,
use_parallel_embedding=use_parallel_embedding,
sharding_dim=sharding_dim)
if mapping.is_last_pp_rank():
if chatglm_version == 'glm':
lm_head_weight = get_weight(model_params, 'word_embeddings',
dtype).clone()
elif chatglm_version == 'chatglm':
lm_head_weight = get_weight(model_params,
'transformer.word_embeddings',
dtype).clone()
elif chatglm_version in ['chatglm2', 'chatglm3']:
lm_head_weight = get_weight(model_params,
'transformer.output_layer', dtype)
assert not share_embedding_table
if not share_embedding_table:
weights['lm_head.weight'] = split(lm_head_weight,
mapping.tp_size,
mapping.tp_rank,
dim=0)
if chatglm_version in ['glm', 'chatglm']:
ln_f_w, ln_f_b = get_weight_and_bias(model_params,
'transformer.final_layernorm',
dtype)
elif chatglm_version in ['chatglm2', 'chatglm3']:
ln_f_w, ln_f_b = get_weight_and_bias(
model_params, 'transformer.encoder.final_layernorm', dtype)
weights['transformer.ln_f.weight'] = ln_f_w
if ln_f_b is not None:
weights['transformer.ln_f.bias'] = ln_f_b
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Weights loaded. Total time: {t}')
return weights
if __name__ == '__main__':
print(tensorrt_llm.__version__)
args = parse_arguments()
world_size = args.tp_size * args.pp_size
assert args.pp_size == 1, "Pipeline parallelism is not supported."
tik = time.time()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
hf_config, chatglm_version = load_chatglm_config(args.model_dir,
args.chatglm_version)
if chatglm_version == 'glm':
position_embedding_type = 'learned_absolute'
elif chatglm_version == 'chatglm':
position_embedding_type = 'chatglm'
elif chatglm_version in ['chatglm2', 'chatglm3']:
position_embedding_type = 'rope_gptj'
config = {
'architecture': 'ChatGLMForCausalLM',
'dtype': args.dtype,
'logits_dtype': args.logits_dtype,
'num_hidden_layers': hf_config.num_layers,
'num_attention_heads': hf_config.num_attention_heads,
'num_key_value_heads': hf_config.num_kv_heads,
'hidden_size': hf_config.hidden_size,
'intermediate_size': hf_config.ffn_hidden_size,
'norm_epsilon': hf_config.layernorm_epsilon,
'vocab_size': hf_config.vocab_size,
'position_embedding_type': position_embedding_type,
'max_position_embeddings': hf_config.max_position_embeddings,
'hidden_act': hf_config.hidden_act,
'use_parallel_embedding': args.use_parallel_embedding,
'embedding_sharding_dim': args.embedding_sharding_dim,
'share_embedding_table': args.use_embedding_sharing,
'quantization': {
'quant_algo': None,
'kv_cache_quant_algo': None,
},
'mapping': {
'world_size': world_size,
'tp_size': args.tp_size,
'pp_size': args.pp_size,
},
'chatglm_version': chatglm_version,
'add_bias_linear': hf_config.add_bias_linear,
'add_qkv_bias': hf_config.add_qkv_bias,
'apply_query_key_layer_scaling': False,
'apply_residual_connection_post_layernorm':
hf_config.apply_residual_connection_post_layernorm,
'rmsnorm': hf_config.rmsnorm,
'rope_ratio': hf_config.rope_ratio,
}
if args.use_weight_only:
if args.weight_only_precision == 'int8':
config['quantization']['quant_algo'] = QuantAlgo.W8A16
elif args.weight_only_precision == 'int4':
config['quantization']['quant_algo'] = QuantAlgo.W4A16
elif args.smoothquant:
if args.per_channel:
if args.per_token:
config['quantization'][
'quant_algo'] = QuantAlgo.W8A8_SQ_PER_CHANNEL_PER_TOKEN_PLUGIN
else:
config['quantization'][
'quant_algo'] = QuantAlgo.W8A8_SQ_PER_CHANNEL_PER_TENSOR_PLUGIN
else:
if args.per_token:
config['quantization'][
'quant_algo'] = QuantAlgo.W8A8_SQ_PER_TENSOR_PER_TOKEN_PLUGIN
else:
config['quantization'][
'quant_algo'] = QuantAlgo.W8A8_SQ_PER_TENSOR_PLUGIN
if args.int8_kv_cache:
config['quantization']['kv_cache_quant_algo'] = QuantAlgo.INT8
with open(os.path.join(args.output_dir, 'config.json'), 'w') as f:
json.dump(config, f, indent=4)
if args.use_weight_only:
if args.weight_only_precision == 'int8':
plugin_weight_only_quant_type = torch.int8
elif args.weight_only_precision == 'int4':
plugin_weight_only_quant_type = torch.quint4x2
else:
plugin_weight_only_quant_type = None
hf_model = AutoModel.from_pretrained(
args.model_dir,
trust_remote_code=True,
torch_dtype='auto' if chatglm_version != 'glm' else getattr(
torch, args.dtype),
device_map='auto' if chatglm_version != 'glm' else 'cuda')
act_range = {}
# smoother for query_key_value.dense and mlp.proj
model_smoother = {}
if args.smoothquant is not None or args.int8_kv_cache:
os.environ["TOKENIZERS_PARALLELISM"] = os.environ.get(
"TOKENIZERS_PARALLELISM", "false")
tokenizer = AutoTokenizer.from_pretrained(
args.model_dir,
trust_remote_code=True,
)
dataset = load_calib_dataset(args.calib_dataset)
act_range = capture_activation_range(hf_model,
tokenizer,
dataset,
num_samples=64)
if args.smoothquant is not None:
smooth_chatglm_model(hf_model, act_range, args.smoothquant,
model_smoother)
def covert_and_save(rank):
mapping = Mapping(world_size=world_size,
rank=rank,
tp_size=args.tp_size,
pp_size=args.pp_size)
weights = convert_hf_chatglm(
hf_model,
hf_config,
chatglm_version,
mapping,
dtype=args.dtype,
use_parallel_embedding=args.use_parallel_embedding,
sharding_dim=args.embedding_sharding_dim,
share_embedding_table=args.use_embedding_sharing,
use_weight_only=args.use_weight_only,
plugin_weight_only_quant_type=plugin_weight_only_quant_type,
use_smooth_quant=args.smoothquant is not None,
per_channel=args.per_channel,
per_token=args.per_token,
int8_kv_cache=args.int8_kv_cache,
act_range=act_range,
smoother=model_smoother,
)
safetensors.torch.save_file(
weights, os.path.join(args.output_dir, f'rank{rank}.safetensors'))
if args.workers == 1:
for rank in range(world_size):
covert_and_save(rank)
else:
with ThreadPoolExecutor(max_workers=args.workers) as p:
futures = [
p.submit(covert_and_save, rank) for rank in range(world_size)
]
exceptions = []
for future in as_completed(futures):
try:
future.result()
except Exception as e:
traceback.print_exc()
exceptions.append(e)
assert len(
exceptions
) == 0, "Checkpoint conversion failed, please check error log."
del hf_model
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Total time of converting checkpoints: {t}')