mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: IbrahimAmin <ibrahimamin532@gmail.com> Co-authored-by: Fabian Joswig <fjosw@users.noreply.github.com> Co-authored-by: Pzzzzz <hello-cd.plus@hotmail.com> Co-authored-by: CoderHam <hemant@cohere.com> Co-authored-by: Konstantin Lopuhin <kostia.lopuhin@gmail.com>
1185 lines
47 KiB
Python
1185 lines
47 KiB
Python
import argparse
|
||
import functools
|
||
import json
|
||
import os
|
||
import time
|
||
import traceback
|
||
from collections import defaultdict
|
||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||
from typing import Dict, Optional, Tuple
|
||
|
||
import numpy as np
|
||
import safetensors
|
||
import torch
|
||
from tqdm import tqdm
|
||
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
||
|
||
import tensorrt_llm
|
||
from tensorrt_llm._utils import pad_vocab_size
|
||
from tensorrt_llm.mapping import Mapping
|
||
from tensorrt_llm.models.convert_utils import load_calib_dataset
|
||
from tensorrt_llm.quantization import QuantAlgo
|
||
|
||
|
||
def parse_arguments():
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument('--model_dir', type=str, default=None)
|
||
parser.add_argument(
|
||
'--chatglm_version',
|
||
default=None,
|
||
choices=[None, 'glm', 'chatglm', 'chatglm2', 'chatglm3'],
|
||
help=
|
||
"By default the script will try to infer the chatglm_version from model_dir. "
|
||
"Or users may overwrite chatglm_version by explicitly passing the version."
|
||
)
|
||
parser.add_argument('--tp_size',
|
||
type=int,
|
||
default=1,
|
||
help='N-way tensor parallelism size')
|
||
parser.add_argument('--pp_size',
|
||
type=int,
|
||
default=1,
|
||
help='N-way pipeline parallelism size')
|
||
parser.add_argument('--dtype',
|
||
type=str,
|
||
default='float16',
|
||
choices=['float32', 'bfloat16', 'float16'])
|
||
parser.add_argument('--logits_dtype',
|
||
type=str,
|
||
default='float32',
|
||
choices=['float16', 'float32'])
|
||
parser.add_argument(
|
||
'--use_parallel_embedding',
|
||
action="store_true",
|
||
default=False,
|
||
help=
|
||
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
|
||
)
|
||
parser.add_argument(
|
||
'--embedding_sharding_dim',
|
||
type=int,
|
||
default=0,
|
||
choices=[0, 1],
|
||
help=
|
||
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
|
||
'To shard it along hidden dimension, set embedding_sharding_dim=1'
|
||
'Note: embedding sharing is only enabled when embedding_sharding_dim = 0'
|
||
)
|
||
parser.add_argument(
|
||
'--use_embedding_sharing',
|
||
action="store_true",
|
||
default=False,
|
||
help=
|
||
'Try to reduce the engine size by sharing the embedding lookup table between two layers.'
|
||
'Note: the flag might not take effect when the criteria are not met.')
|
||
|
||
parser.add_argument(
|
||
'--use_weight_only',
|
||
default=False,
|
||
action="store_true",
|
||
help='Quantize weights for the various GEMMs to INT4/INT8.'
|
||
'See --weight_only_precision to set the precision')
|
||
parser.add_argument(
|
||
'--weight_only_precision',
|
||
const='int8',
|
||
type=str,
|
||
nargs='?',
|
||
default='int8',
|
||
choices=['int8', 'int4'],
|
||
help=
|
||
'Define the precision for the weights when using weight-only quantization.'
|
||
'You must also use --use_weight_only for that argument to have an impact.'
|
||
)
|
||
parser.add_argument(
|
||
'--calib_dataset',
|
||
type=str,
|
||
default='cnn_dailymail',
|
||
help=
|
||
"The huggingface dataset name or the local directory of the dataset for calibration."
|
||
)
|
||
parser.add_argument(
|
||
"--smoothquant",
|
||
"-sq",
|
||
type=float,
|
||
default=None,
|
||
help="Set the α parameter (see https://arxiv.org/pdf/2211.10438.pdf)"
|
||
" to Smoothquant the model, and output int8 weights."
|
||
" A good first try is 0.5. Must be in [0, 1]")
|
||
parser.add_argument(
|
||
'--per_channel',
|
||
action="store_true",
|
||
default=False,
|
||
help=
|
||
'By default, we use a single static scaling factor for the GEMM\'s result. '
|
||
'per_channel instead uses a different static scaling factor for each channel. '
|
||
'The latter is usually more accurate, but a little slower.')
|
||
parser.add_argument(
|
||
'--per_token',
|
||
action="store_true",
|
||
default=False,
|
||
help=
|
||
'By default, we use a single static scaling factor to scale activations in the int8 range. '
|
||
'per_token chooses at run time, and for each token, a custom scaling factor. '
|
||
'The latter is usually more accurate, but a little slower.')
|
||
parser.add_argument(
|
||
'--int8_kv_cache',
|
||
default=False,
|
||
action="store_true",
|
||
help=
|
||
'By default, we use dtype for KV cache. int8_kv_cache chooses int8 quantization for KV'
|
||
)
|
||
|
||
parser.add_argument('--output_dir',
|
||
type=str,
|
||
default='tllm_checkpoint',
|
||
help='The path to save the TensorRT-LLM checkpoint')
|
||
parser.add_argument(
|
||
'--workers',
|
||
type=int,
|
||
default=1,
|
||
help='The number of workers for converting checkpoint in parallel')
|
||
args = parser.parse_args()
|
||
|
||
return args
|
||
|
||
|
||
def load_chatglm_config(model_dir: str,
|
||
chatglm_version: Optional[str] = None) -> AutoConfig:
|
||
config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True)
|
||
|
||
if chatglm_version is None:
|
||
print("Inferring chatglm version from path...")
|
||
for v in ['chatglm3', 'chatglm2', 'chatglm', 'glm']:
|
||
if v in config._name_or_path:
|
||
chatglm_version = v
|
||
break
|
||
assert chatglm_version in ['glm', 'chatglm', 'chatglm2', 'chatglm3']
|
||
print(f"Chatglm version: {chatglm_version}")
|
||
if chatglm_version == 'glm':
|
||
config.num_kv_heads = config.num_attention_heads
|
||
config.ffn_hidden_size = config.hidden_size * 4
|
||
config.hidden_act = 'gelu'
|
||
config.layernorm_epsilon = 1e-5
|
||
config.max_position_embeddings = config.max_sequence_length
|
||
config.add_bias_linear = True
|
||
config.add_qkv_bias = True
|
||
config.apply_query_key_layer_scaling = False
|
||
config.apply_residual_connection_post_layernorm = False
|
||
config.rmsnorm = False
|
||
config.rope_ratio = 1.0
|
||
elif chatglm_version == 'chatglm':
|
||
config.num_kv_heads = config.num_attention_heads
|
||
config.ffn_hidden_size = config.inner_hidden_size
|
||
config.hidden_act = 'gelu'
|
||
config.max_position_embeddings = config.max_sequence_length
|
||
config.add_bias_linear = True
|
||
config.add_qkv_bias = True
|
||
config.apply_query_key_layer_scaling = False
|
||
config.apply_residual_connection_post_layernorm = False
|
||
config.rmsnorm = False
|
||
config.rope_ratio = 1.0
|
||
else:
|
||
config.vocab_size = config.padded_vocab_size
|
||
config.num_kv_heads = config.multi_query_group_num
|
||
config.hidden_act = 'swiglu'
|
||
config.max_position_embeddings = config.seq_length
|
||
config.rmsnorm = getattr(config, 'rmsnorm', 1.0)
|
||
config.rope_ratio = getattr(config, 'rope_ratio', 1.0)
|
||
|
||
return config, chatglm_version
|
||
|
||
|
||
def split(weight: torch.Tensor,
|
||
tp_size: int,
|
||
rank: int = 0,
|
||
dim: int = 0) -> torch.Tensor:
|
||
if tp_size == 1:
|
||
return weight
|
||
elif weight.ndim == 1:
|
||
return torch.chunk(weight, tp_size)[rank].contiguous()
|
||
else:
|
||
return torch.chunk(weight, tp_size, dim=dim)[rank].contiguous()
|
||
|
||
|
||
def tile_kv_weight_bias(v: torch.Tensor, kv_num_head: int, tp_size: int):
|
||
head_size = v.shape[0] // kv_num_head
|
||
reps = tp_size // kv_num_head
|
||
if v.ndim == 1:
|
||
v = v.reshape(kv_num_head, head_size)[:, None, :]
|
||
v = v.expand(kv_num_head, reps, head_size).reshape(-1).clone()
|
||
else:
|
||
hidden_size = v.shape[1]
|
||
v = v.reshape(kv_num_head, head_size, hidden_size)[:, None, :, :]
|
||
v = v.expand(kv_num_head, reps, head_size,
|
||
hidden_size).reshape(-1, hidden_size).clone()
|
||
return v
|
||
|
||
|
||
def split_qkv(v: torch.Tensor, tp_size: int, rank: int, hidden_size: int,
|
||
num_heads: int, num_kv_heads: int):
|
||
head_size = hidden_size // num_heads
|
||
if tp_size == 1:
|
||
return v
|
||
|
||
assert v.shape[0] == hidden_size + head_size * num_kv_heads * 2
|
||
query = v[:hidden_size]
|
||
key = v[hidden_size:hidden_size + head_size * num_kv_heads]
|
||
value = v[hidden_size + head_size * num_kv_heads:hidden_size +
|
||
head_size * num_kv_heads * 2]
|
||
|
||
if num_kv_heads < tp_size:
|
||
key = tile_kv_weight_bias(key, num_kv_heads, tp_size)
|
||
value = tile_kv_weight_bias(value, num_kv_heads, tp_size)
|
||
assert (key.shape[0] % (tp_size * head_size)) == 0
|
||
assert (value.shape[0] % (tp_size * head_size)) == 0
|
||
|
||
q_tmp = torch.chunk(query, tp_size, dim=0)[rank]
|
||
k_tmp = torch.chunk(key, tp_size, dim=0)[rank]
|
||
v_tmp = torch.chunk(value, tp_size, dim=0)[rank]
|
||
return torch.concatenate([q_tmp, k_tmp, v_tmp], dim=0).contiguous()
|
||
|
||
|
||
def split_embedding(
|
||
param: torch.Tensor,
|
||
tp_size: int,
|
||
tp_rank: int,
|
||
use_parallel_embedding: bool = False,
|
||
sharding_dim: int = 0,
|
||
) -> torch.Tensor:
|
||
if param is None:
|
||
return None
|
||
if not use_parallel_embedding:
|
||
return param
|
||
|
||
vocab_size, hidden_size = param.size()
|
||
if sharding_dim == 0:
|
||
if vocab_size % tp_size != 0:
|
||
vocab_size_padded = pad_vocab_size(vocab_size, tp_size)
|
||
pad_width = vocab_size_padded - vocab_size
|
||
param = torch.nn.functional.pad(param, (0, 0, 0, pad_width),
|
||
value=0)
|
||
else:
|
||
assert hidden_size % tp_size == 0
|
||
return split(param, tp_size, tp_rank, dim=sharding_dim)
|
||
|
||
|
||
def get_weight(params: Dict[str, torch.Tensor], prefix: str,
|
||
dtype: torch.dtype) -> torch.Tensor:
|
||
if f'{prefix}.weight' not in params:
|
||
return None
|
||
return params[f'{prefix}.weight'].to(dtype).detach().cpu()
|
||
|
||
|
||
def get_bias(params: Dict[str, torch.Tensor], prefix: str,
|
||
dtype: torch.dtype) -> torch.Tensor:
|
||
if f'{prefix}.bias' not in params:
|
||
return None
|
||
return params[f'{prefix}.bias'].to(dtype).detach().cpu()
|
||
|
||
|
||
def get_weight_and_bias(params: Dict[str, torch.Tensor], prefix: str,
|
||
dtype: torch.dtype) -> Tuple[torch.Tensor]:
|
||
return get_weight(params, prefix, dtype), get_bias(params, prefix, dtype)
|
||
|
||
|
||
def swap_and_split_mlp(weight: torch.Tensor,
|
||
tp_size: int,
|
||
tp_rank: int,
|
||
dim: int = 0) -> torch.Tensor:
|
||
"""Swap the positions of gate and fc weights, and split weights for tensor parallel.
|
||
"""
|
||
gate_weight, fc_weight = torch.chunk(weight, 2, dim=dim)
|
||
fc_w = split(fc_weight, tp_size, tp_rank, dim=dim)
|
||
gate_w = split(gate_weight, tp_size, tp_rank, dim=dim)
|
||
return torch.cat([fc_w, gate_w], dim=dim).contiguous()
|
||
|
||
|
||
def get_tllm_linear_weight(
|
||
weight: torch.Tensor,
|
||
prefix: str,
|
||
bias: Optional[torch.Tensor] = None,
|
||
use_weight_only: bool = False,
|
||
plugin_weight_only_quant_type: torch.dtype = torch.int8
|
||
) -> Dict[str, torch.Tensor]:
|
||
results = {}
|
||
if use_weight_only:
|
||
v = weight.t().contiguous()
|
||
processed_torch_weights, torch_weight_scales = \
|
||
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
||
v, plugin_weight_only_quant_type)
|
||
results[f'{prefix}.weight'] = processed_torch_weights
|
||
results[f'{prefix}.per_channel_scale'] = torch_weight_scales
|
||
else:
|
||
results[f'{prefix}.weight'] = weight.contiguous()
|
||
|
||
if bias is not None:
|
||
results[f'{prefix}.bias'] = bias
|
||
|
||
return results
|
||
|
||
|
||
@torch.no_grad()
|
||
def apply_smoothing(
|
||
scales,
|
||
gemm_weights,
|
||
norm_weights=None,
|
||
norm_bias=None,
|
||
dtype=torch.float32,
|
||
norm_1p=False,
|
||
):
|
||
if not isinstance(gemm_weights, list):
|
||
gemm_weights = [gemm_weights]
|
||
|
||
if norm_weights is not None:
|
||
assert norm_weights.numel() == scales.numel()
|
||
norm_weights.div_(scales).to(dtype)
|
||
if norm_bias is not None:
|
||
assert norm_bias.numel() == scales.numel()
|
||
norm_bias.div_(scales).to(dtype)
|
||
if norm_1p:
|
||
norm_weights += (1 / scales) - 1
|
||
|
||
for gemm in gemm_weights:
|
||
gemm.mul_(scales.view(1, -1)).to(dtype)
|
||
|
||
|
||
@torch.no_grad()
|
||
def smooth_gemm(
|
||
gemm_weights,
|
||
act_scales,
|
||
norm_weights=None,
|
||
norm_bias=None,
|
||
alpha=0.5,
|
||
weight_scales=None,
|
||
):
|
||
if not isinstance(gemm_weights, list):
|
||
gemm_weights = [gemm_weights]
|
||
orig_dtype = gemm_weights[0].dtype
|
||
|
||
for gemm in gemm_weights:
|
||
# gemm_weights are expected to be transposed
|
||
assert gemm.shape[1] == act_scales.numel()
|
||
|
||
if weight_scales is None:
|
||
weight_scales = torch.cat(
|
||
[gemm.abs().max(dim=0, keepdim=True)[0] for gemm in gemm_weights],
|
||
dim=0)
|
||
weight_scales = weight_scales.max(dim=0)[0]
|
||
weight_scales.to(float).clamp(min=1e-5)
|
||
scales = (act_scales.to(gemm_weights[0].device).to(float).pow(alpha) /
|
||
weight_scales.pow(1 - alpha)).clamp(min=1e-5)
|
||
|
||
apply_smoothing(scales, gemm_weights, norm_weights, norm_bias, orig_dtype)
|
||
|
||
return scales
|
||
|
||
|
||
@torch.no_grad()
|
||
def capture_activation_range(
|
||
model,
|
||
tokenizer,
|
||
dataset,
|
||
num_samples=64,
|
||
seq_len=512,
|
||
):
|
||
|
||
model.eval()
|
||
device = next(model.parameters()).device
|
||
scales = defaultdict(lambda: {"x": None, "y": None, "w": None})
|
||
|
||
def stat_tensor(name, tensor, key):
|
||
tensor = tensor.view(-1, tensor.shape[-1]).detach()
|
||
comming_max = tensor.abs().max(dim=0)[0].float()
|
||
if scales[name][key] is None:
|
||
scales[name][key] = comming_max
|
||
else:
|
||
scales[name][key] = torch.max(scales[name][key], comming_max)
|
||
|
||
def stat_input_hook(m, x, y, name):
|
||
if isinstance(x, tuple):
|
||
x = x[0]
|
||
stat_tensor(name, x, "x")
|
||
stat_tensor(name, y, "y")
|
||
if scales[name]["w"] is None:
|
||
scales[name]["w"] = m.weight.abs().clip(1e-8, None).max(dim=1)[0]
|
||
|
||
hooks = []
|
||
for name, m in model.named_modules():
|
||
if isinstance(m, torch.nn.Linear):
|
||
hooks.append(
|
||
m.register_forward_hook(
|
||
functools.partial(stat_input_hook, name=name)))
|
||
|
||
for i in tqdm(range(num_samples), desc="Calibration"):
|
||
input_ids = tokenizer(
|
||
dataset[i],
|
||
return_tensors="pt",
|
||
max_length=seq_len,
|
||
truncation=True,
|
||
)
|
||
model(input_ids.input_ids.to(device))
|
||
|
||
for h in hooks:
|
||
h.remove()
|
||
|
||
return scales
|
||
|
||
|
||
def generate_int8(weights, act_range, is_qkv=False, multi_query_mode=True):
|
||
"""
|
||
This function has two purposes:
|
||
- compute quantized weights, scaled either per-tensor or per-column
|
||
- compute scaling factors
|
||
|
||
Depending on the GEMM API (CUTLASS/CUBLAS) the required scaling factors differ.
|
||
CUTLASS uses two sets of scaling factors. One for the activation X, one for the weight W.
|
||
CUBLAS only has one (we can't do per-row scaling). So we must provide pre-multiplied scaling factor.
|
||
|
||
Here is the list of what we need (T means per-tensor, C per-column):
|
||
- scale_x_orig_quant puts fp activation into the quantized range (i.e. [-128, 127], for int8). Used before the GEMM. (T)
|
||
- scale_y_quant_orig puts quantized activation into the fp range. Used if the GEMM outputs int8. (T)
|
||
- scale_w_quant_orig puts weights from quant range to fp range (used with CUTLASS) (T, C)
|
||
- scale_y_accum_quant puts the GEMM result (XW) from accumulation range (int32)
|
||
to quant range (int8) (used for CUBLAS) (T, C)
|
||
|
||
Note that we don't do anything special about row-parallel GEMM. Theoretically, we could have per-GPU scaling factors too,
|
||
but then the model would change depending on the number of GPUs used.
|
||
|
||
For QKV projection, the behavior is special. Even if we have a single matrix to perform QKV projection, we consider it
|
||
as three different matrices: Q, K, and V. So per-tensor actually means one scaling factor for each Q, K and V.
|
||
For our GEMM implementation to respect this behavior, we use per-column mode and replicate values along columns.
|
||
"""
|
||
|
||
# For ChatGLM2/3-6B models (num_kv_head == 2), we regard multi_query_mode == True to reuse code from gpt and baichuan examples.
|
||
if is_qkv and multi_query_mode:
|
||
hidden_dim, local_dim = weights.shape
|
||
|
||
kv_dim = (local_dim - hidden_dim) // 2
|
||
scale_w_q = act_range["w"][0:hidden_dim]
|
||
scale_w_k = act_range["w"][hidden_dim:hidden_dim + kv_dim]
|
||
scale_w_v = act_range["w"][-kv_dim:]
|
||
|
||
scale_w_qkv_t = torch.concat([
|
||
scale_w_q.max(dim=0, keepdim=True)[0],
|
||
scale_w_k.max(dim=0, keepdim=True)[0],
|
||
scale_w_v.max(dim=0, keepdim=True)[0]
|
||
])
|
||
scale_w_orig_quant_t = 127. / scale_w_qkv_t.cpu().numpy().astype(
|
||
np.float32)
|
||
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy().astype(
|
||
np.float32)
|
||
elif is_qkv and not multi_query_mode:
|
||
scale_w_orig_quant_t = 127. / act_range["w"].reshape(3, -1).max(
|
||
dim=-1, keepdims=True)[0].cpu().numpy().astype(np.float32)
|
||
scale_w_orig_quant_c = 127. / act_range["w"].reshape(
|
||
3, -1).cpu().numpy().astype(np.float32)
|
||
|
||
else:
|
||
scale_w_orig_quant_t = 127. / act_range["w"].max().cpu().numpy().astype(
|
||
np.float32)
|
||
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy().astype(
|
||
np.float32)
|
||
scale_w_quant_orig_t = 1.0 / scale_w_orig_quant_t
|
||
scale_w_quant_orig_c = 1.0 / scale_w_orig_quant_c
|
||
|
||
# compute the rest of needed scaling factors
|
||
scale_x_orig_quant_t = np.array(127. / act_range["x"].max().item()).astype(
|
||
np.float32)
|
||
scale_y_orig_quant_t = np.array(127. / act_range["y"].max().item()).astype(
|
||
np.float32)
|
||
scale_y_quant_orig_t = np.array(act_range["y"].max().item() / 127.).astype(
|
||
np.float32)
|
||
scale_y_accum_quant_t = scale_y_orig_quant_t / (scale_x_orig_quant_t *
|
||
scale_w_orig_quant_t)
|
||
scale_y_accum_quant_c = scale_y_orig_quant_t / (scale_x_orig_quant_t *
|
||
scale_w_orig_quant_c)
|
||
if is_qkv and not multi_query_mode:
|
||
scale_y_accum_quant_t = np.broadcast_to(scale_y_accum_quant_t,
|
||
scale_w_orig_quant_c.shape)
|
||
scale_w_quant_orig_t = np.broadcast_to(scale_w_quant_orig_t,
|
||
scale_w_orig_quant_c.shape)
|
||
if is_qkv and multi_query_mode:
|
||
scale_q_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[0],
|
||
scale_w_q.shape)
|
||
scale_k_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[1],
|
||
scale_w_k.shape)
|
||
scale_v_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[2],
|
||
scale_w_v.shape)
|
||
scale_y_accum_quant_t = np.concatenate(
|
||
[scale_q_y_accum_t, scale_k_y_accum_t, scale_v_y_accum_t])
|
||
scale_w_quant_orig_t = np.concatenate([
|
||
np.broadcast_to(scale_w_quant_orig_t[0], scale_w_q.shape),
|
||
np.broadcast_to(scale_w_quant_orig_t[1], scale_w_k.shape),
|
||
np.broadcast_to(scale_w_quant_orig_t[2], scale_w_v.shape)
|
||
])
|
||
|
||
to_i8 = lambda x: x.round().clip(-127, 127).astype(np.int8)
|
||
|
||
if is_qkv and multi_query_mode:
|
||
scale_w_orig_quant_t_expand = np.ones([weights.shape[-1]])
|
||
scale_w_orig_quant_t_expand[:hidden_dim] = scale_w_orig_quant_t[0]
|
||
scale_w_orig_quant_t_expand[hidden_dim:hidden_dim +
|
||
kv_dim] = scale_w_orig_quant_t[1]
|
||
scale_w_orig_quant_t_expand[-kv_dim:] = scale_w_orig_quant_t[2]
|
||
weight_int8 = to_i8(weights * scale_w_orig_quant_t_expand)
|
||
else:
|
||
weight_int8 = to_i8(weights * scale_w_orig_quant_t)
|
||
return {
|
||
"weight.int8": weight_int8,
|
||
"weight.int8.col": to_i8(weights * scale_w_orig_quant_c),
|
||
"scale_x_orig_quant": scale_x_orig_quant_t.astype(np.float32),
|
||
"scale_w_quant_orig": scale_w_quant_orig_t.astype(np.float32),
|
||
"scale_w_quant_orig.col": scale_w_quant_orig_c.astype(np.float32),
|
||
"scale_y_accum_quant": scale_y_accum_quant_t.astype(np.float32),
|
||
"scale_y_accum_quant.col": scale_y_accum_quant_c.astype(np.float32),
|
||
"scale_y_quant_orig": scale_y_quant_orig_t.astype(np.float32),
|
||
}
|
||
|
||
|
||
@torch.no_grad()
|
||
def smooth_chatglm_model(
|
||
model,
|
||
act_range,
|
||
alpha,
|
||
model_smoother,
|
||
):
|
||
for name, module in model.named_modules():
|
||
if not module._get_name() == "GLMBlock":
|
||
continue
|
||
|
||
# QKV multiplication weight
|
||
layer_name = name + '.self_attention.query_key_value'
|
||
print(f'Smoothing module: {layer_name}')
|
||
weight = module.self_attention.query_key_value.weight
|
||
smoother = smooth_gemm(
|
||
weight,
|
||
act_range[layer_name]["x"],
|
||
module.input_layernorm.weight,
|
||
None,
|
||
alpha,
|
||
)
|
||
act_range[layer_name]["x"] = act_range[layer_name]["x"] / smoother
|
||
act_range[layer_name]["w"] = weight.abs().max(dim=1)[0]
|
||
|
||
# Dense multiplication weight
|
||
layer_name = name + ".self_attention.dense"
|
||
print(f'Smoothing module: {layer_name}')
|
||
weight = module.self_attention.dense.weight
|
||
smoother = smooth_gemm(
|
||
weight,
|
||
act_range[layer_name]["x"],
|
||
None,
|
||
None,
|
||
alpha,
|
||
)
|
||
model_smoother[layer_name] = smoother.float()
|
||
act_range[layer_name]["x"] = act_range[layer_name]["x"] / smoother
|
||
act_range[layer_name]["w"] = weight.abs().max(dim=1)[0]
|
||
|
||
# Multilayer perceptron h -> 4h weight
|
||
layer_name = name + ".mlp.dense_h_to_4h"
|
||
print(f'Smoothing module: {layer_name}')
|
||
weight = module.mlp.dense_h_to_4h.weight
|
||
smoother = smooth_gemm(
|
||
weight,
|
||
act_range[layer_name]["x"],
|
||
module.post_attention_layernorm.weight,
|
||
None,
|
||
alpha,
|
||
)
|
||
act_range[layer_name]["x"] = act_range[layer_name]["x"] / smoother
|
||
act_range[layer_name]["w"] = weight.abs().max(dim=1)[0]
|
||
|
||
# Multilayer perceptron 4h -> h weight
|
||
layer_name = name + ".mlp.dense_4h_to_h"
|
||
print(f'Smoothing module: {layer_name}')
|
||
weight = module.mlp.dense_4h_to_h.weight
|
||
smoother = smooth_gemm(
|
||
weight,
|
||
act_range[layer_name]["x"],
|
||
None,
|
||
None,
|
||
alpha,
|
||
)
|
||
model_smoother[layer_name] = smoother.float()
|
||
act_range[layer_name]["x"] = act_range[layer_name]["x"] / smoother
|
||
act_range[layer_name]["w"] = weight.abs().max(dim=1)[0]
|
||
|
||
|
||
def get_tllm_linear_sq_weight(vals,
|
||
prefix,
|
||
shape,
|
||
is_qkv=False,
|
||
per_token=False,
|
||
per_channel=False,
|
||
last_prefix=None,
|
||
smoother_value=None,
|
||
smoother_shape=None):
|
||
results = {}
|
||
col_shape = shape if (is_qkv or per_channel) else [1, 1]
|
||
|
||
if per_token:
|
||
if per_channel:
|
||
original_weights = np.array(vals["weight.int8.col"])
|
||
else:
|
||
original_weights = np.array(vals["weight.int8"])
|
||
|
||
cur_weights = original_weights
|
||
if is_qkv:
|
||
hidden_dim = cur_weights.shape[0]
|
||
cur_weights = cur_weights.reshape(hidden_dim, -1)
|
||
results[prefix +
|
||
'weight'] = torch.from_numpy(cur_weights).t().contiguous()
|
||
if smoother_value is None:
|
||
results[last_prefix] = torch.from_numpy(
|
||
np.array([1.0], dtype=np.float16))
|
||
|
||
if per_channel:
|
||
cur_per_channel_value = vals["scale_w_quant_orig.col"]
|
||
else:
|
||
cur_per_channel_value = vals["scale_w_quant_orig"]
|
||
|
||
results[prefix + 'per_channel_scale'] = torch.from_numpy(
|
||
np.array(cur_per_channel_value,
|
||
dtype=np.float32).reshape(col_shape)).contiguous()
|
||
else:
|
||
if per_channel:
|
||
original_weights = np.array(vals["weight.int8.col"])
|
||
else:
|
||
original_weights = np.array(vals["weight.int8"])
|
||
cur_weights = original_weights
|
||
|
||
if is_qkv:
|
||
hidden_dim = cur_weights.shape[0]
|
||
cur_weights = cur_weights.reshape(hidden_dim, -1)
|
||
results[prefix +
|
||
'weight'] = torch.from_numpy(cur_weights).t().contiguous()
|
||
|
||
if per_channel:
|
||
cur_per_channel_value = vals["scale_y_accum_quant.col"]
|
||
else:
|
||
cur_per_channel_value = vals["scale_y_accum_quant"]
|
||
|
||
results[prefix + 'per_channel_scale'] = torch.from_numpy(
|
||
np.array([cur_per_channel_value],
|
||
dtype=np.float32).reshape(col_shape)).contiguous()
|
||
|
||
results[last_prefix] = torch.from_numpy(
|
||
np.array([vals['scale_x_orig_quant']],
|
||
dtype=np.float32)).contiguous()
|
||
|
||
results[prefix + 'act_scale'] = torch.from_numpy(
|
||
np.array([[vals["scale_y_quant_orig"]]],
|
||
dtype=np.float32)).contiguous()
|
||
|
||
if smoother_value is not None:
|
||
results[prefix + 'smoother'] = smoother_value.reshape(
|
||
smoother_shape).contiguous().to(torch.float32)
|
||
|
||
return results
|
||
|
||
|
||
def convert_hf_chatglm(hf_model: AutoModel,
|
||
hf_config: AutoConfig,
|
||
chatglm_version: str,
|
||
mapping: Mapping,
|
||
dtype: str = 'float32',
|
||
use_parallel_embedding: bool = False,
|
||
sharding_dim: int = 0,
|
||
share_embedding_table: bool = False,
|
||
use_weight_only: bool = False,
|
||
plugin_weight_only_quant_type: str = 'int8',
|
||
use_smooth_quant: bool = False,
|
||
per_channel=False,
|
||
per_token=False,
|
||
int8_kv_cache=False,
|
||
act_range=None,
|
||
smoother=None):
|
||
weights = {}
|
||
tik = time.time()
|
||
|
||
model_params = dict(hf_model.named_parameters())
|
||
dtype = getattr(torch, dtype)
|
||
num_attention_heads = hf_config.num_attention_heads
|
||
hidden_size = hf_config.hidden_size
|
||
hf_config.vocab_size
|
||
num_kv_heads = getattr(hf_config, 'num_kv_heads', num_attention_heads)
|
||
num_hidden_layers = hf_config.num_layers
|
||
|
||
layers_range = mapping.pp_layers(num_hidden_layers)
|
||
for l in layers_range:
|
||
if chatglm_version in ['glm', 'chatglm']:
|
||
prefix = f'transformer.layers.{l}'
|
||
elif chatglm_version in ['chatglm2', 'chatglm3']:
|
||
prefix = f'transformer.encoder.layers.{l}'
|
||
tllm_prex = f'transformer.layers.{l-layers_range[0]}'
|
||
|
||
# Attention QKV
|
||
if chatglm_version in ['glm', 'chatglm']:
|
||
qkv_weight, qkv_bias = get_weight_and_bias(
|
||
model_params, f'{prefix}.attention.query_key_value', dtype)
|
||
qkv_act_range = act_range.get(f'{prefix}.attention.query_key_value')
|
||
elif chatglm_version in ['chatglm2', 'chatglm3']:
|
||
qkv_weight, qkv_bias = get_weight_and_bias(
|
||
model_params, f'{prefix}.self_attention.query_key_value', dtype)
|
||
qkv_act_range = act_range.get(
|
||
f'{prefix}.self_attention.query_key_value')
|
||
|
||
if use_smooth_quant:
|
||
qkv_vals_int8 = generate_int8(qkv_weight.t().numpy(),
|
||
qkv_act_range,
|
||
is_qkv=True,
|
||
multi_query_mode=True)
|
||
weights.update(
|
||
get_tllm_linear_sq_weight(
|
||
vals=qkv_vals_int8,
|
||
prefix=f'{tllm_prex}.attention.qkv.',
|
||
shape=[1, qkv_weight.size(0)],
|
||
is_qkv=True,
|
||
per_token=per_token,
|
||
per_channel=per_channel,
|
||
last_prefix=f'{tllm_prex}.input_layernorm.scale_to_int',
|
||
smoother_value=None,
|
||
smoother_shape=None))
|
||
if qkv_bias is not None:
|
||
qkv_b = split_qkv(qkv_bias,
|
||
mapping.tp_size,
|
||
mapping.tp_rank,
|
||
hidden_size,
|
||
num_attention_heads,
|
||
num_kv_heads=num_kv_heads)
|
||
weights[f'{tllm_prex}.attention.qkv.bias'] = qkv_b
|
||
else:
|
||
qkv_w = split_qkv(qkv_weight,
|
||
mapping.tp_size,
|
||
mapping.tp_rank,
|
||
hidden_size,
|
||
num_attention_heads,
|
||
num_kv_heads=num_kv_heads)
|
||
if qkv_bias is None:
|
||
qkv_b = None
|
||
else:
|
||
qkv_b = split_qkv(qkv_bias,
|
||
mapping.tp_size,
|
||
mapping.tp_rank,
|
||
hidden_size,
|
||
num_attention_heads,
|
||
num_kv_heads=num_kv_heads)
|
||
|
||
weights.update(
|
||
get_tllm_linear_weight(qkv_w, f'{tllm_prex}.attention.qkv',
|
||
qkv_b, use_weight_only,
|
||
plugin_weight_only_quant_type))
|
||
|
||
if int8_kv_cache:
|
||
qkv_vals_int8 = generate_int8(qkv_weight.t().numpy(),
|
||
qkv_act_range,
|
||
is_qkv=True,
|
||
multi_query_mode=True)
|
||
weights[
|
||
f'{tllm_prex}.attention.kv_cache_scaling_factor'] = torch.from_numpy(
|
||
np.array([qkv_vals_int8['scale_y_quant_orig']],
|
||
dtype=np.float32)).contiguous()
|
||
|
||
# Attention dense
|
||
if chatglm_version in ['glm', 'chatglm']:
|
||
attn_dense_weight, attn_dense_bias = get_weight_and_bias(
|
||
model_params, f'{prefix}.attention.dense', dtype)
|
||
dense_act_range = act_range.get(f'{prefix}.attention.dense')
|
||
dense_smoother = smoother.get(f'{prefix}.attention.dense')
|
||
else:
|
||
attn_dense_weight, attn_dense_bias = get_weight_and_bias(
|
||
model_params, f'{prefix}.self_attention.dense', dtype)
|
||
dense_act_range = act_range.get(f'{prefix}.self_attention.dense')
|
||
dense_smoother = smoother.get(f'{prefix}.self_attention.dense')
|
||
|
||
if use_smooth_quant:
|
||
dense_vals_int8 = generate_int8(attn_dense_weight.t().numpy(),
|
||
dense_act_range,
|
||
is_qkv=False,
|
||
multi_query_mode=True)
|
||
weights.update(
|
||
get_tllm_linear_sq_weight(
|
||
vals=dense_vals_int8,
|
||
prefix=f'{tllm_prex}.attention.dense.',
|
||
shape=[1, hidden_size],
|
||
is_qkv=False,
|
||
per_token=per_token,
|
||
per_channel=per_channel,
|
||
last_prefix=
|
||
f'{tllm_prex}.attention.quantization_scaling_factor',
|
||
smoother_value=dense_smoother,
|
||
smoother_shape=[1, hidden_size]))
|
||
if attn_dense_bias is not None:
|
||
weights[f'{tllm_prex}.attention.dense.bias'] = attn_dense_bias
|
||
else:
|
||
attn_dense_w = split(attn_dense_weight,
|
||
mapping.tp_size,
|
||
mapping.tp_rank,
|
||
dim=1)
|
||
weights.update(
|
||
get_tllm_linear_weight(attn_dense_w,
|
||
f'{tllm_prex}.attention.dense',
|
||
attn_dense_bias, use_weight_only,
|
||
plugin_weight_only_quant_type))
|
||
|
||
# MLP FC
|
||
mlp_fc_weight, mlp_fc_bias = get_weight_and_bias(
|
||
model_params, f'{prefix}.mlp.dense_h_to_4h', dtype)
|
||
|
||
if use_smooth_quant:
|
||
fc_act_range = act_range.get(f'{prefix}.mlp.dense_h_to_4h')
|
||
fc_vals_int8 = generate_int8(mlp_fc_weight.t().numpy(),
|
||
fc_act_range,
|
||
is_qkv=False,
|
||
multi_query_mode=True)
|
||
cur_weights = get_tllm_linear_sq_weight(
|
||
vals=fc_vals_int8,
|
||
prefix=f'{tllm_prex}.mlp.fc.',
|
||
shape=[1, mlp_fc_weight.size(0)],
|
||
is_qkv=False,
|
||
per_token=per_token,
|
||
per_channel=per_channel,
|
||
last_prefix=f'{tllm_prex}.post_layernorm.scale_to_int',
|
||
smoother_value=None,
|
||
smoother_shape=None,
|
||
)
|
||
cur_weights[f'{tllm_prex}.mlp.fc.weight'] = swap_and_split_mlp(
|
||
cur_weights[f'{tllm_prex}.mlp.fc.weight'],
|
||
mapping.tp_size,
|
||
mapping.tp_rank,
|
||
dim=0,
|
||
)
|
||
if per_channel:
|
||
cur_weights[
|
||
f'{tllm_prex}.mlp.fc.per_channel_scale'] = swap_and_split_mlp(
|
||
cur_weights[f'{tllm_prex}.mlp.fc.per_channel_scale'],
|
||
mapping.tp_size,
|
||
mapping.tp_rank,
|
||
dim=1,
|
||
)
|
||
weights.update(cur_weights)
|
||
if chatglm_version in ['glm', 'chatglm']:
|
||
if mlp_fc_bias is not None:
|
||
mlp_fc_b = split(mlp_fc_bias,
|
||
mapping.tp_size,
|
||
mapping.tp_rank,
|
||
dim=0)
|
||
weights[f'{tllm_prex}.mlp.fc.bias'] = mlp_fc_b
|
||
elif chatglm_version in ['chatglm2', 'chatglm3']:
|
||
if mlp_fc_bias is not None:
|
||
mlp_fc_b = swap_and_split_mlp(mlp_fc_bias, mapping.tp_size,
|
||
mapping.tp_rank)
|
||
weights[f'{tllm_prex}.mlp.fc.bias'] = mlp_fc_b
|
||
else:
|
||
if chatglm_version in ['glm', 'chatglm']:
|
||
mlp_fc_w = split(mlp_fc_weight,
|
||
mapping.tp_size,
|
||
mapping.tp_rank,
|
||
dim=0)
|
||
if mlp_fc_bias is None:
|
||
mlp_fc_b = None
|
||
else:
|
||
mlp_fc_b = split(mlp_fc_bias,
|
||
mapping.tp_size,
|
||
mapping.tp_rank,
|
||
dim=0)
|
||
elif chatglm_version in ['chatglm2', 'chatglm3']:
|
||
mlp_fc_w = swap_and_split_mlp(mlp_fc_weight, mapping.tp_size,
|
||
mapping.tp_rank)
|
||
if mlp_fc_bias is None:
|
||
mlp_fc_b = None
|
||
else:
|
||
mlp_fc_b = swap_and_split_mlp(mlp_fc_bias, mapping.tp_size,
|
||
mapping.tp_rank)
|
||
weights.update(
|
||
get_tllm_linear_weight(mlp_fc_w, f'{tllm_prex}.mlp.fc',
|
||
mlp_fc_b, use_weight_only,
|
||
plugin_weight_only_quant_type))
|
||
|
||
# MLP Proj
|
||
mlp_proj_weight, mlp_proj_bias = get_weight_and_bias(
|
||
model_params, f'{prefix}.mlp.dense_4h_to_h', dtype)
|
||
|
||
if use_smooth_quant:
|
||
proj_act_range = act_range.get(f'{prefix}.mlp.dense_4h_to_h')
|
||
proj_smoother = smoother.get(f'{prefix}.mlp.dense_4h_to_h')
|
||
proj_vals_int8 = generate_int8(mlp_proj_weight.t().numpy(),
|
||
proj_act_range,
|
||
is_qkv=False,
|
||
multi_query_mode=True)
|
||
weights.update(
|
||
get_tllm_linear_sq_weight(
|
||
vals=proj_vals_int8,
|
||
prefix=f'{tllm_prex}.mlp.proj.',
|
||
shape=[1, hidden_size],
|
||
is_qkv=False,
|
||
per_token=per_token,
|
||
per_channel=per_channel,
|
||
last_prefix=f'{tllm_prex}.mlp.quantization_scaling_factor',
|
||
smoother_value=proj_smoother,
|
||
smoother_shape=[1, hf_config.ffn_hidden_size]))
|
||
if mlp_proj_bias is not None:
|
||
weights[f'{tllm_prex}.mlp.proj.bias'] = mlp_proj_bias
|
||
else:
|
||
mlp_proj_w = split(mlp_proj_weight,
|
||
mapping.tp_size,
|
||
mapping.tp_rank,
|
||
dim=1)
|
||
weights.update(
|
||
get_tllm_linear_weight(mlp_proj_w, f'{tllm_prex}.mlp.proj',
|
||
mlp_proj_bias, use_weight_only,
|
||
plugin_weight_only_quant_type))
|
||
|
||
input_ln_weight, input_ln_bias = get_weight_and_bias(
|
||
model_params, f'{prefix}.input_layernorm', dtype)
|
||
weights[f'{tllm_prex}.input_layernorm.weight'] = input_ln_weight
|
||
if input_ln_bias is not None:
|
||
weights[f'{tllm_prex}.input_layernorm.bias'] = input_ln_bias
|
||
|
||
post_ln_weight, post_ln_bias = get_weight_and_bias(
|
||
model_params, f'{prefix}.post_attention_layernorm', dtype)
|
||
weights[f'{tllm_prex}.post_layernorm.weight'] = post_ln_weight
|
||
if post_ln_bias is not None:
|
||
weights[f'{tllm_prex}.post_layernorm.bias'] = post_ln_bias
|
||
|
||
if mapping.is_first_pp_rank():
|
||
if chatglm_version == 'glm':
|
||
embed_w = get_weight(model_params, 'word_embeddings', dtype)
|
||
pos_embed_w = get_weight(model_params,
|
||
'transformer.position_embeddings', dtype)
|
||
weights['transformer.position_embedding.weight'] = split_embedding(
|
||
pos_embed_w,
|
||
tp_size=mapping.tp_size,
|
||
tp_rank=mapping.tp_rank,
|
||
use_parallel_embedding=use_parallel_embedding,
|
||
sharding_dim=sharding_dim)
|
||
block_embed_w = get_weight(model_params,
|
||
'transformer.block_position_embeddings',
|
||
dtype)
|
||
weights['transformer.block_embedding.weight'] = split_embedding(
|
||
block_embed_w,
|
||
tp_size=mapping.tp_size,
|
||
tp_rank=mapping.tp_rank,
|
||
use_parallel_embedding=use_parallel_embedding,
|
||
sharding_dim=sharding_dim)
|
||
elif chatglm_version == 'chatglm':
|
||
embed_w = get_weight(model_params, 'transformer.word_embeddings',
|
||
dtype)
|
||
elif chatglm_version in ['chatglm2', 'chatglm3']:
|
||
embed_w = get_weight(model_params,
|
||
'transformer.embedding.word_embeddings', dtype)
|
||
|
||
weights['transformer.vocab_embedding.weight'] = split_embedding(
|
||
embed_w,
|
||
tp_size=mapping.tp_size,
|
||
tp_rank=mapping.tp_rank,
|
||
use_parallel_embedding=use_parallel_embedding,
|
||
sharding_dim=sharding_dim)
|
||
|
||
if mapping.is_last_pp_rank():
|
||
if chatglm_version == 'glm':
|
||
lm_head_weight = get_weight(model_params, 'word_embeddings',
|
||
dtype).clone()
|
||
elif chatglm_version == 'chatglm':
|
||
lm_head_weight = get_weight(model_params,
|
||
'transformer.word_embeddings',
|
||
dtype).clone()
|
||
elif chatglm_version in ['chatglm2', 'chatglm3']:
|
||
lm_head_weight = get_weight(model_params,
|
||
'transformer.output_layer', dtype)
|
||
assert not share_embedding_table
|
||
|
||
if not share_embedding_table:
|
||
weights['lm_head.weight'] = split(lm_head_weight,
|
||
mapping.tp_size,
|
||
mapping.tp_rank,
|
||
dim=0)
|
||
|
||
if chatglm_version in ['glm', 'chatglm']:
|
||
ln_f_w, ln_f_b = get_weight_and_bias(model_params,
|
||
'transformer.final_layernorm',
|
||
dtype)
|
||
elif chatglm_version in ['chatglm2', 'chatglm3']:
|
||
ln_f_w, ln_f_b = get_weight_and_bias(
|
||
model_params, 'transformer.encoder.final_layernorm', dtype)
|
||
weights['transformer.ln_f.weight'] = ln_f_w
|
||
if ln_f_b is not None:
|
||
weights['transformer.ln_f.bias'] = ln_f_b
|
||
|
||
tok = time.time()
|
||
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
||
print(f'Weights loaded. Total time: {t}')
|
||
return weights
|
||
|
||
|
||
if __name__ == '__main__':
|
||
print(tensorrt_llm.__version__)
|
||
args = parse_arguments()
|
||
world_size = args.tp_size * args.pp_size
|
||
assert args.pp_size == 1, "Pipeline parallelism is not supported."
|
||
|
||
tik = time.time()
|
||
|
||
if not os.path.exists(args.output_dir):
|
||
os.makedirs(args.output_dir)
|
||
|
||
hf_config, chatglm_version = load_chatglm_config(args.model_dir,
|
||
args.chatglm_version)
|
||
|
||
if chatglm_version == 'glm':
|
||
position_embedding_type = 'learned_absolute'
|
||
elif chatglm_version == 'chatglm':
|
||
position_embedding_type = 'chatglm'
|
||
elif chatglm_version in ['chatglm2', 'chatglm3']:
|
||
position_embedding_type = 'rope_gptj'
|
||
|
||
config = {
|
||
'architecture': 'ChatGLMForCausalLM',
|
||
'dtype': args.dtype,
|
||
'logits_dtype': args.logits_dtype,
|
||
'num_hidden_layers': hf_config.num_layers,
|
||
'num_attention_heads': hf_config.num_attention_heads,
|
||
'num_key_value_heads': hf_config.num_kv_heads,
|
||
'hidden_size': hf_config.hidden_size,
|
||
'intermediate_size': hf_config.ffn_hidden_size,
|
||
'norm_epsilon': hf_config.layernorm_epsilon,
|
||
'vocab_size': hf_config.vocab_size,
|
||
'position_embedding_type': position_embedding_type,
|
||
'max_position_embeddings': hf_config.max_position_embeddings,
|
||
'hidden_act': hf_config.hidden_act,
|
||
'use_parallel_embedding': args.use_parallel_embedding,
|
||
'embedding_sharding_dim': args.embedding_sharding_dim,
|
||
'share_embedding_table': args.use_embedding_sharing,
|
||
'quantization': {
|
||
'quant_algo': None,
|
||
'kv_cache_quant_algo': None,
|
||
},
|
||
'mapping': {
|
||
'world_size': world_size,
|
||
'tp_size': args.tp_size,
|
||
'pp_size': args.pp_size,
|
||
},
|
||
'chatglm_version': chatglm_version,
|
||
'add_bias_linear': hf_config.add_bias_linear,
|
||
'add_qkv_bias': hf_config.add_qkv_bias,
|
||
'apply_query_key_layer_scaling': False,
|
||
'apply_residual_connection_post_layernorm':
|
||
hf_config.apply_residual_connection_post_layernorm,
|
||
'rmsnorm': hf_config.rmsnorm,
|
||
'rope_ratio': hf_config.rope_ratio,
|
||
}
|
||
|
||
if args.use_weight_only:
|
||
if args.weight_only_precision == 'int8':
|
||
config['quantization']['quant_algo'] = QuantAlgo.W8A16
|
||
elif args.weight_only_precision == 'int4':
|
||
config['quantization']['quant_algo'] = QuantAlgo.W4A16
|
||
elif args.smoothquant:
|
||
if args.per_channel:
|
||
if args.per_token:
|
||
config['quantization'][
|
||
'quant_algo'] = QuantAlgo.W8A8_SQ_PER_CHANNEL_PER_TOKEN_PLUGIN
|
||
else:
|
||
config['quantization'][
|
||
'quant_algo'] = QuantAlgo.W8A8_SQ_PER_CHANNEL_PER_TENSOR_PLUGIN
|
||
else:
|
||
if args.per_token:
|
||
config['quantization'][
|
||
'quant_algo'] = QuantAlgo.W8A8_SQ_PER_TENSOR_PER_TOKEN_PLUGIN
|
||
else:
|
||
config['quantization'][
|
||
'quant_algo'] = QuantAlgo.W8A8_SQ_PER_TENSOR_PLUGIN
|
||
|
||
if args.int8_kv_cache:
|
||
config['quantization']['kv_cache_quant_algo'] = QuantAlgo.INT8
|
||
|
||
with open(os.path.join(args.output_dir, 'config.json'), 'w') as f:
|
||
json.dump(config, f, indent=4)
|
||
|
||
if args.use_weight_only:
|
||
if args.weight_only_precision == 'int8':
|
||
plugin_weight_only_quant_type = torch.int8
|
||
elif args.weight_only_precision == 'int4':
|
||
plugin_weight_only_quant_type = torch.quint4x2
|
||
else:
|
||
plugin_weight_only_quant_type = None
|
||
|
||
hf_model = AutoModel.from_pretrained(
|
||
args.model_dir,
|
||
trust_remote_code=True,
|
||
torch_dtype='auto' if chatglm_version != 'glm' else getattr(
|
||
torch, args.dtype),
|
||
device_map='auto' if chatglm_version != 'glm' else 'cuda')
|
||
|
||
act_range = {}
|
||
# smoother for query_key_value.dense and mlp.proj
|
||
model_smoother = {}
|
||
if args.smoothquant is not None or args.int8_kv_cache:
|
||
os.environ["TOKENIZERS_PARALLELISM"] = os.environ.get(
|
||
"TOKENIZERS_PARALLELISM", "false")
|
||
tokenizer = AutoTokenizer.from_pretrained(
|
||
args.model_dir,
|
||
trust_remote_code=True,
|
||
)
|
||
dataset = load_calib_dataset(args.calib_dataset)
|
||
act_range = capture_activation_range(hf_model,
|
||
tokenizer,
|
||
dataset,
|
||
num_samples=64)
|
||
if args.smoothquant is not None:
|
||
smooth_chatglm_model(hf_model, act_range, args.smoothquant,
|
||
model_smoother)
|
||
|
||
def covert_and_save(rank):
|
||
mapping = Mapping(world_size=world_size,
|
||
rank=rank,
|
||
tp_size=args.tp_size,
|
||
pp_size=args.pp_size)
|
||
|
||
weights = convert_hf_chatglm(
|
||
hf_model,
|
||
hf_config,
|
||
chatglm_version,
|
||
mapping,
|
||
dtype=args.dtype,
|
||
use_parallel_embedding=args.use_parallel_embedding,
|
||
sharding_dim=args.embedding_sharding_dim,
|
||
share_embedding_table=args.use_embedding_sharing,
|
||
use_weight_only=args.use_weight_only,
|
||
plugin_weight_only_quant_type=plugin_weight_only_quant_type,
|
||
use_smooth_quant=args.smoothquant is not None,
|
||
per_channel=args.per_channel,
|
||
per_token=args.per_token,
|
||
int8_kv_cache=args.int8_kv_cache,
|
||
act_range=act_range,
|
||
smoother=model_smoother,
|
||
)
|
||
|
||
safetensors.torch.save_file(
|
||
weights, os.path.join(args.output_dir, f'rank{rank}.safetensors'))
|
||
|
||
if args.workers == 1:
|
||
for rank in range(world_size):
|
||
covert_and_save(rank)
|
||
else:
|
||
with ThreadPoolExecutor(max_workers=args.workers) as p:
|
||
futures = [
|
||
p.submit(covert_and_save, rank) for rank in range(world_size)
|
||
]
|
||
exceptions = []
|
||
for future in as_completed(futures):
|
||
try:
|
||
future.result()
|
||
except Exception as e:
|
||
traceback.print_exc()
|
||
exceptions.append(e)
|
||
assert len(
|
||
exceptions
|
||
) == 0, "Checkpoint conversion failed, please check error log."
|
||
|
||
del hf_model
|
||
tok = time.time()
|
||
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
||
print(f'Total time of converting checkpoints: {t}')
|