* Update TensorRT-LLM --------- Co-authored-by: RunningLeon <mnsheng@yeah.net> Co-authored-by: Tlntin <TlntinDeng01@Gmail.com> Co-authored-by: ZHENG, Zhen <zhengzhen.z@qq.com> Co-authored-by: Pham Van Ngoan <ngoanpham1196@gmail.com> Co-authored-by: Nathan Price <nathan@abridge.com> Co-authored-by: Tushar Goel <tushar.goel.ml@gmail.com> Co-authored-by: Mati <132419219+matichon-vultureprime@users.noreply.github.com> |
||
|---|---|---|
| .. | ||
| convert_checkpoint.py | ||
| README.md | ||
| requirements.txt | ||
Mamba
This document shows how to build and run a Mamba model in TensorRT-LLM on a single GPU.
Overview
The TensorRT-LLM Mamba implementation can be found in tensorrt_llm/models/mamba/model.py. The TensorRT-LLM Mamba example code is located in examples/mamba. There is one main file:
convert_checkpoint.pyto convert a checkpoint from the HuggingFace (HF) Transformers format to the TensorRT-LLM format.
In addition, there are two shared files in the parent folder examples for inference and evaluation:
../run.pyto run the inference on an input text;../summarize.pyto summarize the articles in the cnn_dailymail dataset.
Support Matrix
- FP16
- BF16
Usage
The next two sections describe how to convert the weights from the HuggingFace (HF) Transformers format to the TensorRT-LLM format.
1. Download weights from HuggingFace Transformers
Please install required packages first and setup git-lfs:
pip install -r requirements.txt
pip install "transformers>=4.39.0"
# Setup git-lfs
git lfs install
There are five HF checkpoints available. Use one of the following commands to fetch the checkpoint you are interested in.
# mamba-2.8b
git clone https://huggingface.co/state-spaces/mamba-2.8b-hf ./mamba_model/mamba-2.8b
# mamba-1.4b
git clone https://huggingface.co/state-spaces/mamba-1.4b-hf ./mamba_model/mamba-1.4b
# mamba-790m
git clone https://huggingface.co/state-spaces/mamba-790m-hf ./mamba_model/mamba-790m
# mamba-370m
git clone https://huggingface.co/state-spaces/mamba-370m-hf ./mamba_model/mamba-370m
# mamba-130m
git clone https://huggingface.co/state-spaces/mamba-130m-hf ./mamba_model/mamba-130m
Since mamba models use tokenizer from gpt-neox-20b model, use the following command to fetch the checkpoint of gpt-neox-20b.
# gpt-neox-20b
git clone https://huggingface.co/EleutherAI/gpt-neox-20b ./mamba_model/gpt-neox-20b
2. Convert weights from HF Transformers to TensorRT-LLM format
The convert_checkpoint.py script converts HF weights to TensorRT-LLM checkpoints.
# mamba-2.8b
python convert_checkpoint.py --model_dir ./mamba_model/mamba-2.8b/ \
--dtype bfloat16 \
--output_dir ./mamba_model/mamba-2.8b/trt_ckpt/bf16/1-gpu/
# mamba-1.4b
python convert_checkpoint.py --model_dir ./mamba_model/mamba-1.4b/ \
--dtype float16 \
--output_dir ./mamba_model/mamba-1.4b/trt_ckpt/fp16/1-gpu/
# mamba-790m
python convert_checkpoint.py --model_dir ./mamba_model/mamba-790m/ \
--dtype float16 \
--output_dir ./mamba_model/mamba-790m/trt_ckpt/fp16/1-gpu/
# mamba-370m
python convert_checkpoint.py --model_dir ./mamba_model/mamba-370m/ \
--dtype float16 \
--output_dir ./mamba_model/mamba-370m/trt_ckpt/fp16/1-gpu/
# mamba-130m
python convert_checkpoint.py --model_dir ./mamba_model/mamba-130m/ \
--dtype float16 \
--output_dir ./mamba_model/mamba-130m/trt_ckpt/fp16/1-gpu/
3. Build TensorRT engine(s)
The trtllm-build command builds TensorRT-LLM engines from TensorRT-LLM checkpoints.
# mamba-2.8b
trtllm-build --checkpoint_dir ./mamba_model/mamba-2.8b/trt_ckpt/bf16/1-gpu/ \
--paged_kv_cache disable \
--gemm_plugin bfloat16 \
--mamba_conv1d_plugin bfloat16 \
--max_batch_size 8 \
--max_input_len 924 \
--max_output_len 100 \
--output_dir ./mamba_model/mamba-2.8b/trt_engines/bf16/1-gpu/
# mamba-1.4b
trtllm-build --checkpoint_dir ./mamba_model/mamba-1.4b/trt_ckpt/fp16/1-gpu/ \
--paged_kv_cache disable \
--gemm_plugin float16 \
--mamba_conv1d_plugin float16 \
--max_batch_size 8 \
--max_input_len 924 \
--max_output_len 100 \
--output_dir ./mamba_model/mamba-1.4b/trt_engines/fp16/1-gpu/
# mamba-790m
trtllm-build --checkpoint_dir ./mamba_model/mamba-790m/trt_ckpt/fp16/1-gpu/ \
--paged_kv_cache disable \
--gemm_plugin float16 \
--mamba_conv1d_plugin float16 \
--max_batch_size 8 \
--max_input_len 924 \
--max_output_len 100 \
--output_dir ./mamba_model/mamba-790m/trt_engines/fp16/1-gpu/
# mamba-370m
trtllm-build --checkpoint_dir ./mamba_model/mamba-370m/trt_ckpt/fp16/1-gpu/ \
--paged_kv_cache disable \
--gemm_plugin float16 \
--mamba_conv1d_plugin float16 \
--max_batch_size 8 \
--max_input_len 924 \
--max_output_len 100 \
--output_dir ./mamba_model/mamba-370m/trt_engines/fp16/1-gpu/
# mamba-130m
trtllm-build --checkpoint_dir ./mamba_model/mamba-130m/trt_ckpt/fp16/1-gpu/ \
--paged_kv_cache disable \
--gemm_plugin float16 \
--mamba_conv1d_plugin float16 \
--max_batch_size 8 \
--max_input_len 924 \
--max_output_len 100 \
--output_dir ./mamba_model/mamba-130m/trt_engines/fp16/1-gpu/
Note that when building Mamba models, you need to disable the paged_kv_cache as it is used for
transformer-based models. Mamba models use paged_state instead and it is enabed by default.
If paged_state is disabled, engine will be built with the contiguous stage cache.
4. Run summarization task with the TensorRT engine(s)
The following section describes how to run a TensorRT-LLM Mamba model to summarize the articles from the
cnn_dailymail dataset. For each summary, the script can compute the
ROUGE scores and use the ROUGE-1 score to validate the implementation.
Run
# mamba-2.8b
python ../summarize.py --test_trt_llm \
--hf_model_dir ./mamba_model/mamba-2.8b/ \
--tokenizer_dir ./mamba_model/gpt-neox-20b/ \
--data_type bf16 \
--engine_dir ./mamba_model/mamba-2.8b/trt_engines/bf16/1-gpu/
# mamba-1.4b
python ../summarize.py --test_trt_llm \
--hf_model_dir ./mamba_model/mamba-1.4b/ \
--tokenizer_dir ./mamba_model/gpt-neox-20b/ \
--data_type fp16 \
--engine_dir ./mamba_model/mamba-1.4b/trt_engines/fp16/1-gpu/
# mamba-790m
python ../summarize.py --test_trt_llm \
--hf_model_dir ./mamba_model/mamba-790m/ \
--tokenizer_dir ./mamba_model/gpt-neox-20b/ \
--data_type fp16 \
--engine_dir ./mamba_model/mamba-790m/trt_engines/fp16/1-gpu/
# mamba-370m
python ../summarize.py --test_trt_llm \
--hf_model_dir ./mamba_model/mamba-370m/ \
--tokenizer_dir ./mamba_model/gpt-neox-20b/ \
--data_type fp16 \
--engine_dir ./mamba_model/mamba-370m/trt_engines/fp16/1-gpu/
# mamba-130m
python ../summarize.py --test_trt_llm \
--hf_model_dir ./mamba_model/mamba-130m/ \
--tokenizer_dir ./mamba_model/gpt-neox-20b/ \
--data_type fp16 \
--engine_dir ./mamba_model/mamba-130m/trt_engines/fp16/1-gpu/