TensorRT-LLMs/tests/functional/test_arange.py
Kaiyu Xie b777bd6475
Update TensorRT-LLM (#1725)
* Update TensorRT-LLM

---------

Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: Tlntin <TlntinDeng01@Gmail.com>
Co-authored-by: ZHENG, Zhen <zhengzhen.z@qq.com>
Co-authored-by: Pham Van Ngoan <ngoanpham1196@gmail.com>
Co-authored-by: Nathan Price <nathan@abridge.com>
Co-authored-by: Tushar Goel <tushar.goel.ml@gmail.com>
Co-authored-by: Mati <132419219+matichon-vultureprime@users.noreply.github.com>
2024-06-04 20:26:32 +08:00

89 lines
2.8 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
import numpy as np
import torch
import tensorrt_llm
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import create_session, run_session
class TestArange(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
def test_arange_int(self):
# test data
start = 0
end = 128
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
output = tensorrt_llm.functional.arange(start=start,
end=end,
dtype="int32")
output.mark_output('output', "int32")
# trt run
inputs = {}
session = create_session(builder, network, precision="float32")
outputs = run_session(session, inputs)
ref = torch.arange(start, end).int().cuda()
torch.testing.assert_close(outputs['output'], ref)
def test_arange_tensor(self):
# test data
s = 0
e = 128
dtype = 'int32'
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
start = tensorrt_llm.functional.constant(np.array(s,
dtype=np.int32))
end_tensor = tensorrt_llm.functional.constant(
np.array([0] * e, dtype=np.int32))
output = tensorrt_llm.functional.arange(
start=start,
end=tensorrt_llm.functional.shape(end_tensor, 0),
dtype=dtype)
output.mark_output('output', dtype)
# trt run
inputs = {}
session = create_session(builder, network, precision="float32")
outputs = run_session(session, inputs)
# pytorch run
ref = torch.arange(s, e).int().cuda()
# compare diff
torch.testing.assert_close(outputs['output'], ref)