TensorRT-LLMs/cpp/tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQAImplJIT/decoderXQAImplJIT.cpp
Kaiyu Xie 1730a587d8
Update TensorRT-LLM (#2363)
* Update TensorRT-LLM

---------

Co-authored-by: tonylek <137782967+tonylek@users.noreply.github.com>
2024-10-22 20:27:35 +08:00

301 lines
13 KiB
C++

/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQAImplJIT/decoderXQAImplJIT.h"
#include "compileEngine.h"
#include "tensorrt_llm/common/envUtils.h"
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/cubin/xqa_kernel_cubin.h"
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQAConstants.h"
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQAImplJIT/decoderXQAImplJIT.h"
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQAImplJIT/kernelUtils.h"
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQARunner.h"
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/tensorMapUtils.h"
#include "tensorrt_llm/kernels/unfusedAttentionKernels.h"
namespace
{
using ::tensorrt_llm::kernels::XQAKernelRuntimeHashKey;
using ::tensorrt_llm::kernels::XQAParams;
using ::tensorrt_llm::kernels::XQAKernelMetaInfo;
XQAKernelRuntimeHashKey getRuntimeHashKeyFromKernelMeta(XQAKernelMetaInfo const& kernelMeta)
{
return {kernelMeta.mKVDataType, kernelMeta.mHeadDim, kernelMeta.mBeamWidth, kernelMeta.mNumQHeadsOverKV,
kernelMeta.mMTileSize, kernelMeta.mTokensPerPage, kernelMeta.mPagedKVCache, kernelMeta.mMultiQueryTokens};
}
} // anonymous namespace
namespace tensorrt_llm
{
namespace kernels
{
DecoderXQAImplJIT::DecoderXQAImplJIT(DecoderXQARunner* runner)
: DecoderXQAImpl(runner)
, mDriver(tensorrt_llm::common::CUDADriverWrapper::getInstance())
, mForceXQA(tensorrt_llm::common::forceXQAKernels())
, mSM(tensorrt_llm::common::getSMVersion())
{
}
bool DecoderXQAImplJIT::supportConfig(XQAParams const& xqaParams, bool forConfigurePlugin) const
{
return jit::supportConfigQGMMA(xqaParams, mSM, forConfigurePlugin)
|| jit::supportConfigHMMA(xqaParams, mSM, forConfigurePlugin);
}
bool DecoderXQAImplJIT::mayHavePerfGain(XQAParams const& xqaParams) const
{
// NOTE: only XQA supports multi_query_tokens (Medusa mode).
if (mForceXQA || xqaParams.multi_query_tokens)
{
return true;
}
int num_kv_heads = xqaParams.num_kv_heads;
int batch_size = static_cast<int>(xqaParams.batch_size);
int multi_block_count = 1;
if (xqaParams.multi_block_mode)
{
int history_length = xqaParams.timestep;
multi_block_count = history_length / kMinHistoryTokensPerBlock;
}
int block_count = num_kv_heads * batch_size * multi_block_count;
return static_cast<float>(block_count) * kEnableMinBlockFactor >= static_cast<float>(mRunner->mMultiProcessorCount);
}
bool DecoderXQAImplJIT::shouldUse(XQAParams const& umbrellaXQAParams, bool forConfigurePlugin)
{
if (forConfigurePlugin)
{
for (int beam_width = 1; beam_width <= umbrellaXQAParams.beam_width; ++beam_width)
{
XQAParams actualXQAParams = umbrellaXQAParams;
actualXQAParams.beam_width = beam_width;
if (supportConfig(actualXQAParams, forConfigurePlugin))
{
return true;
}
}
return false;
}
else
{
auto const& xqaParams = umbrellaXQAParams;
return supportConfig(xqaParams, forConfigurePlugin) && mayHavePerfGain(xqaParams);
}
}
jit::CubinObjKey DecoderXQAImplJIT::getCubinObjKeyFromXQAParams(XQAParams const& xqaParams) const
{
XQAKernelLoadHashKey loadKey;
loadKey.data_type = xqaParams.data_type;
loadKey.sm = mSM;
XQAKernelRuntimeHashKey runtimeKey = getRuntimeHashKeyFromXQAParams(xqaParams);
return {loadKey, runtimeKey};
}
void DecoderXQAImplJIT::prepareForActualXQAParams(XQAParams const& xqaParams)
{
jit::CubinObjKey currentKey = getCubinObjKeyFromXQAParams(xqaParams);
jit::CompileEngine compileEngine(mSM, xqaParams);
auto registryGlobal = DecoderXQARunner::getResourceGlobal()->getCubinObjRegistry();
if (supportConfig(xqaParams, true))
{
jit::CubinObjKey key = getCubinObjKeyFromXQAParams(xqaParams);
registryGlobal->insertCubinIfNotExists(key, &compileEngine, /*initialize=*/true);
}
}
void DecoderXQAImplJIT::prepare(XQAParams const& umbrellaXQAParams)
{
for (int beam_width = 1; beam_width <= umbrellaXQAParams.beam_width; ++beam_width)
{
XQAParams actualXQAParams = umbrellaXQAParams;
actualXQAParams.beam_width = beam_width;
prepareForActualXQAParams(actualXQAParams);
}
}
void DecoderXQAImplJIT::runWithKVLinearBuffer(
XQAParams const& xqaParams, KVLinearBuffer const& kv_linear_buffer, cudaStream_t const& stream)
{
runDispatchKVCacheBuffer<KVLinearBuffer>(xqaParams, kv_linear_buffer, stream);
}
void DecoderXQAImplJIT::runWithKVBlockArray(
XQAParams const& xqaParams, KVBlockArray const& kv_block_array, cudaStream_t const& stream)
{
runDispatchKVCacheBuffer<KVBlockArray>(xqaParams, kv_block_array, stream);
}
#define XQA_KERNEL_RUN(DATA_TYPE) \
runImpl<DATA_TYPE, KVCacheBuffer>(xqa_params, kv_cache_buffer, mRunner->mMultiProcessorCount, stream)
template <typename KVCacheBuffer>
void DecoderXQAImplJIT::runDispatchKVCacheBuffer(
XQAParams const& xqa_params, KVCacheBuffer const& kv_cache_buffer, cudaStream_t const& stream)
{
if (mRunner->mDataType == DATA_TYPE_FP16)
{
XQA_KERNEL_RUN(__half);
}
else
{
XQA_KERNEL_RUN(__nv_bfloat16);
}
}
#undef XQA_KERNEL_RUN
template <typename T, typename KVCacheBuffer>
void DecoderXQAImplJIT::runImpl(XQAParams const& xqaParams, KVCacheBuffer const& kv_cache_buffer,
int multiprocessor_count, cudaStream_t const& stream)
{
unsigned int head_size = xqaParams.head_size;
int num_q_heads = xqaParams.num_q_heads;
int num_kv_heads = xqaParams.num_kv_heads;
TLLM_CHECK_WITH_INFO(num_q_heads % num_kv_heads == 0, "numQHeads should be multiple of numKVHeads.");
unsigned int num_q_heads_over_kv = num_q_heads / num_kv_heads;
unsigned int beam_width = xqaParams.beam_width;
unsigned int batch_beam_size = xqaParams.batch_size * beam_width;
const KvCacheDataType cache_type = xqaParams.kv_cache_quant_mode.hasInt8KvCache()
? KvCacheDataType::INT8
: (xqaParams.kv_cache_quant_mode.hasFp8KvCache() ? KvCacheDataType::FP8 : KvCacheDataType::BASE);
XQALaunchParam<KVCacheBuffer> launchParams;
void* ioScratch = nullptr;
buildXQALaunchParams(launchParams, ioScratch, xqaParams, kv_cache_buffer);
bool const needOutputCvt = (xqaParams.fp8_out_scale != nullptr);
if (needOutputCvt)
{
launchParams.output = ioScratch;
}
// Build cu_seqlens, padding_offset, and rotary inv freq tensors
BuildDecoderInfoParams<T> decoder_params;
memset(&decoder_params, 0, sizeof(decoder_params));
decoder_params.seqQOffsets = launchParams.cu_seq_lens;
decoder_params.seqQLengths = xqaParams.spec_decoding_generation_lengths;
decoder_params.seqKVLengths = xqaParams.sequence_lengths;
decoder_params.batchSize = int(batch_beam_size);
decoder_params.maxQSeqLength = xqaParams.generation_input_length;
TLLM_CHECK_WITH_INFO(!xqaParams.multi_query_tokens || xqaParams.spec_decoding_generation_lengths != nullptr,
"Spec_decoding_generation_lengths must be provided.");
// Rotary embedding inv_freq buffer.
decoder_params.rotaryEmbeddingScale = xqaParams.rotary_embedding_scale;
decoder_params.rotaryEmbeddingBase = xqaParams.rotary_embedding_base;
decoder_params.rotaryEmbeddingDim = xqaParams.rotary_embedding_dim;
decoder_params.rotaryScalingType = xqaParams.rotary_embedding_scale_type;
decoder_params.rotaryEmbeddingInvFreq = launchParams.rotary_inv_freq_buf;
decoder_params.rotaryEmbeddingInvFreqCache = xqaParams.rotary_embedding_inv_freq_cache;
decoder_params.rotaryEmbeddingMaxPositions = xqaParams.rotary_embedding_max_positions;
invokeBuildDecoderInfo(decoder_params, stream);
sync_check_cuda_error();
// IDEA: Store rotary_processed Q buffer to output buffer.
// NOTE: MHA kernels should read kv cache that has already been appended with new tokens' kv cache.
void* xqa_q_input_ptr = ioScratch;
QKVPreprocessingParams<T, KVCacheBuffer> preprocessingParms{static_cast<T*>(const_cast<void*>(xqaParams.qkv)),
nullptr, nullptr, static_cast<T*>(xqa_q_input_ptr), kv_cache_buffer, static_cast<T const*>(xqaParams.qkv_bias),
xqaParams.spec_decoding_generation_lengths, xqaParams.sequence_lengths, /* encoder_seqlens */ nullptr,
xqaParams.multi_query_tokens ? launchParams.cu_seq_lens : nullptr, /* cu_kv_seqlens */ nullptr,
launchParams.rotary_inv_freq_buf, (float2 const*) nullptr, xqaParams.kv_scale_orig_quant,
xqaParams.spec_decoding_position_offsets, int(batch_beam_size), xqaParams.generation_input_length,
xqaParams.timestep, xqaParams.cyclic_attention_window_size, xqaParams.sink_token_length,
int(xqaParams.batch_size * beam_width * xqaParams.generation_input_length),
/*remove_padding*/ true, /*cross_attention*/ false, xqaParams.num_q_heads, xqaParams.num_kv_heads,
xqaParams.num_q_heads / xqaParams.num_kv_heads, xqaParams.head_size, xqaParams.rotary_embedding_dim,
xqaParams.rotary_embedding_base, xqaParams.rotary_embedding_scale_type, xqaParams.rotary_embedding_scale,
xqaParams.rotary_embedding_max_positions, xqaParams.position_embedding_type, xqaParams.position_shift_enabled,
cache_type, true, false, multiprocessor_count, xqaParams.rotary_vision_start, xqaParams.rotary_vision_length};
invokeQKVPreprocessing<T, KVCacheBuffer>(preprocessingParms, stream);
sync_check_cuda_error();
// Use mTileSize = 16 kernels when qSeqLen <= 16.
unsigned int qSeqLen = static_cast<unsigned int>(xqaParams.generation_input_length);
unsigned int mTileSize = qSeqLen <= 16 ? 16 : 32;
// MultiQueryToken kernels can support any num_q_heads_over_kv that is power of 2.
unsigned int kernel_num_q_heads_over_kv = xqaParams.multi_query_tokens ? 0 : num_q_heads_over_kv;
// MultiQueryToken kernels can handle either 16/32 for M direction per CTA.
unsigned int kernel_m_tilesize = xqaParams.multi_query_tokens ? mTileSize : num_q_heads_over_kv;
jit::CubinObjKey key = getCubinObjKeyFromXQAParams(xqaParams);
jit::CubinObj* cubinObj = DecoderXQARunner::getResourceGlobal()->getCubinObjRegistry()->getCubin(key);
TLLM_CHECK(cubinObj != nullptr && cubinObj->isInitialized());
TLLM_CHECK_WITH_INFO(!xqaParams.multi_query_tokens, "Medusa should take XQA Precompiled codepath.");
bool const isGMMAKernel = jit::supportConfigQGMMA(xqaParams, mSM, false);
constexpr uint32_t kMAX_NB_KERNEL_PARAMS = 11;
uint32_t const maxNbKernelParams = (isGMMAKernel ? 11 : 10);
uint32_t idxNextParam = 0;
void* kernelParams[kMAX_NB_KERNEL_PARAMS];
auto appendParam = [&](auto* p) mutable
{
TLLM_CHECK(idxNextParam < maxNbKernelParams);
kernelParams[idxNextParam++] = p;
};
appendParam(&launchParams.num_k_heads);
appendParam(&launchParams.output);
appendParam(&xqa_q_input_ptr);
appendParam(&launchParams.kvCacheParams);
if (xqaParams.beam_width > 1)
{
appendParam(&launchParams.beamSearchParams.value());
}
appendParam(&launchParams.batch_size);
appendParam(&launchParams.kv_scale_quant_orig);
CUtensorMap tensorMap{};
if (isGMMAKernel)
{
tensorMap = makeTensorMapForKVCache(mDriver, xqaParams, kv_cache_buffer);
appendParam(&tensorMap);
}
appendParam(&launchParams.semaphores);
appendParam(&launchParams.scratch);
kernelParams[idxNextParam] = nullptr; // one extra nullptr at end as guard.
int multi_block = 1;
if (xqaParams.multi_block_mode)
{
multi_block = computeMultiBlockCount(xqaParams, xqaParams.batch_size, multiprocessor_count);
}
dim3 gridDim(multi_block, xqaParams.num_kv_heads, xqaParams.batch_size);
dim3 blockDim(128, 1, isGMMAKernel ? 3 : 2);
cubinObj->launch(gridDim, blockDim, stream, kernelParams);
sync_check_cuda_error();
if (needOutputCvt)
{
tensorrt_llm::kernels::invokeConversion<__nv_fp8_e4m3, T>(static_cast<__nv_fp8_e4m3*>(xqaParams.output),
static_cast<T const*>(launchParams.output),
xqaParams.head_size * xqaParams.num_q_heads * xqaParams.total_num_input_tokens, xqaParams.fp8_out_scale,
stream);
sync_check_cuda_error();
}
}
} // namespace kernels
} // namespace tensorrt_llm