TensorRT-LLMs/cpp/tensorrt_llm/kernels/speculativeDecoding/externalDraftTokensKernels.cu
2024-11-05 16:27:06 +08:00

327 lines
14 KiB
Plaintext

/*
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/common/cudaTypeUtils.cuh"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/common/reduceKernelUtils.cuh"
#include "tensorrt_llm/kernels/speculativeDecoding/externalDraftTokensKernels.h"
#ifndef CUDART_VERSION
#error CUDART_VERSION Undefined!
#elif (CUDART_VERSION >= 11050)
#include <cub/cub.cuh>
#else
#include "3rdparty/cub/cub.cuh"
#endif
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::runtime;
namespace tensorrt_llm::kernels::speculative_decoding
{
namespace
{
template <typename T>
__global__ void maskTargetLogitsKernel(T* targetLogits, SizeType32 const* batchSlots, SizeType32 beamWidth,
SizeType32 vocabSize, FinishedState const* finishedInput, SizeType32 maxBatchSize, bool const* batchUseDraftLogits,
SizeType32* outputIdsAfterSampling, SizeType32* targetOutputIds, SizeType32* runtimeTopKDevicePtr, bool* maskBuffer)
{
/**
* @brief Masking the selected token to -inf as was done in Huggingface TopK/TopP Logits Warper
* https://github.com/huggingface/transformers/blob/2e24ee4dfa39cc0bc264b89edbccc373c8337086/src/transformers/generation/logits_process.py#L533
*/
auto const bid = blockIdx.x;
auto const batchIdx = bid / beamWidth;
auto const tid = static_cast<SizeType32>(threadIdx.x);
auto const batchSlot = batchSlots[batchIdx];
constexpr bool IS_HALF = std::is_same<T, half>::value;
T const MAX_T_VAL = (IS_HALF) ? HALF_FLT_MAX : FLT_MAX;
auto targetLogitsBatch = targetLogits + batchIdx * vocabSize;
auto& finishedState = finishedInput[batchSlot];
auto* outputIdsAfterSamplingPtr = outputIdsAfterSampling + batchSlot * vocabSize;
auto const useDraftLogits = batchUseDraftLogits[batchSlot];
auto* maskBufferBatch = maskBuffer + batchSlot * vocabSize;
if (finishedState.isSkipDecoding() || finishedState.isFinished())
{
return;
}
__shared__ SizeType32 tokensToMask;
if (tid == 0)
{
tokensToMask = runtimeTopKDevicePtr[batchSlot];
}
__syncthreads();
for (SizeType32 vIdx = tid; vIdx < vocabSize; vIdx += static_cast<SizeType32>(blockDim.x))
{
if (outputIdsAfterSamplingPtr[vIdx] == -1)
{ // we need to find the -1 boundary from returnAllTopP outputIds if topK == 0 or number of topP indices < topK
tokensToMask = vIdx;
}
maskBufferBatch[vIdx] = false;
}
__syncthreads();
if (!useDraftLogits && tid == 0)
{
targetOutputIds[batchSlot] = outputIdsAfterSamplingPtr[tokensToMask - 1];
}
for (SizeType32 vIdx = tid; vIdx < tokensToMask; vIdx += static_cast<SizeType32>(blockDim.x))
{
auto tokenToMask = outputIdsAfterSamplingPtr[vIdx];
maskBufferBatch[tokenToMask] = true;
}
__syncthreads();
for (SizeType32 vIdx = tid; vIdx < vocabSize; vIdx += static_cast<SizeType32>(blockDim.x))
{
if (!maskBufferBatch[vIdx])
{
targetLogitsBatch[vIdx] = -MAX_T_VAL;
}
}
}
template <typename T>
__global__ void acceptDraftTokensKernel(T const* draftProbs, T* targetProbs, SizeType32 const* numsDraftTokens,
bool const* batchUseDraftLogits, TokenIdType const* draftIds, FinishedState const* finishedInput,
FinishedState* finishedOutput, curandState_t* curandState, SizeType32 const* batchSlots, SizeType32 maxDraftTokens,
SizeType32 beamWidth, SizeType32 vocabSize, bool randomThreshold, float constantThreshold, SizeType32 step,
bool* batchIsAccepted, SizeType32* targetOutputIds)
{
auto const bid = blockIdx.x;
auto const draftTokenIdx = step;
auto const batchIdx = bid / beamWidth;
auto const beamIdx = bid % beamWidth;
auto const batchSlot = batchSlots[batchIdx];
auto const batchSlotBeamWidth = batchSlot * beamWidth + beamIdx;
auto const tid = static_cast<SizeType32>(threadIdx.x);
auto const numDraftTokens = numsDraftTokens[batchSlotBeamWidth];
auto const useDraftLogits = batchUseDraftLogits[batchSlotBeamWidth];
if (draftTokenIdx > numDraftTokens || finishedInput[batchSlot].isSkipDecoding()
|| finishedInput[batchSlot].isFinished())
{
if (tid == 0)
{
batchIsAccepted[batchSlot] = true;
// either finished or skip decode in previous step, this step don't need decoding
finishedOutput[batchSlot].setSkipDecoding();
// if previous step is finished, write the state to next step too
if (finishedInput[batchSlot].isFinished())
{
finishedOutput[batchSlot] = finishedInput[batchSlot];
}
}
return;
}
auto const logitsOffset = (batchSlot * maxDraftTokens + draftTokenIdx) * beamWidth * vocabSize;
auto const draftProbsBatch = draftProbs + logitsOffset;
auto const targetProbsBatch = targetProbs + (batchIdx * beamWidth * vocabSize);
__shared__ bool isAccepted;
__shared__ T sSumVal;
if (tid == 0)
{
if (draftTokenIdx < numDraftTokens)
{
auto const draftOutputTokenId = draftIds[batchSlot * maxDraftTokens + draftTokenIdx];
if (useDraftLogits)
{
float threshold = randomThreshold ? curand_uniform(curandState + batchSlot) : constantThreshold;
auto const targetProb = static_cast<float>(targetProbsBatch[draftOutputTokenId]);
auto const draftProb = static_cast<float>(draftProbsBatch[draftOutputTokenId]);
auto rateQP = targetProb / draftProb;
if (rateQP < threshold)
{
isAccepted = false;
finishedOutput[batchSlot].setSkipDecoding();
}
else
{
isAccepted = true;
}
}
else
{
// Check if draft tokens are the same as target tokens
isAccepted = targetOutputIds[batchSlot] == draftOutputTokenId;
if (!isAccepted)
{
finishedOutput[batchSlot].setSkipDecoding();
}
}
}
else
{
isAccepted = false;
finishedOutput[batchSlot].setSkipDecoding();
}
batchIsAccepted[batchSlot] = isAccepted;
}
__syncthreads();
if (!isAccepted)
{
T const zeroVal = static_cast<T>(0.0f);
T sumVal = zeroVal;
for (SizeType32 vIdx = tid; vIdx < vocabSize; vIdx += static_cast<SizeType32>(blockDim.x))
{
targetProbsBatch[vIdx]
-= (draftTokenIdx < numDraftTokens && useDraftLogits) ? draftProbsBatch[vIdx] : zeroVal;
targetProbsBatch[vIdx] = targetProbsBatch[vIdx] >= zeroVal ? targetProbsBatch[vIdx] : zeroVal;
sumVal += targetProbsBatch[vIdx];
}
sumVal = blockReduceSum<T>(sumVal);
if (tid == 0)
{
sSumVal = sumVal;
}
__syncthreads();
for (SizeType32 vIdx = tid; vIdx < vocabSize; vIdx += static_cast<SizeType32>(blockDim.x))
{
targetProbsBatch[vIdx] /= sSumVal;
}
}
}
__global__ void forwardAcceptedTokensKernel(SizeType32 batchSize, SizeType32 const* batchSlots, bool* batchIsAccepted,
SizeType32* sequenceLengths, TokenIdType const* draftIds, TokenIdType** idsPtrs, SizeType32 step,
SizeType32 maxDraftTokens, TokenIdType const* endIds, FinishedState* finishedOutput)
{
auto index = static_cast<SizeType32>(blockIdx.x * blockDim.x + threadIdx.x);
for (SizeType32 bi = index; bi < batchSize; bi += static_cast<SizeType32>(gridDim.x * blockDim.x))
{
auto const batchSlot = batchSlots[bi];
if (batchIsAccepted[batchSlot] && !finishedOutput[batchSlot].isSkipDecoding()
&& !finishedOutput[batchSlot].isFinished())
{
auto const curSeqLen = sequenceLengths[batchSlot];
auto const draftTokenIdx = step;
auto const draftOutputTokenId = draftIds[batchSlot * maxDraftTokens + draftTokenIdx];
auto* outputIdsRequestPtr = idsPtrs[batchSlot];
auto const outIdx = curSeqLen;
outputIdsRequestPtr[outIdx] = draftOutputTokenId;
if (outputIdsRequestPtr[outIdx] == endIds[batchSlot])
{
finishedOutput[batchSlot].setFinishedEOS();
// Do not increase seq len when EOS is generated. Seq len should always contain only tokens to be
// outputted
}
else
{
// We don't need to set output finished state as it is assumed to be in non finished state
sequenceLengths[batchSlot] += 1;
}
}
}
} // namespace
} // namespace
template <typename T>
void invokeMaskTargetLogits(SizeType32 batchSize, T* targetLogits, SizeType32 const* batchSlots, SizeType32 beamWidth,
SizeType32 vocabSizePadded, FinishedState const* finishedInput, SizeType32 maxBatchSize,
bool const* batchUseDraftLogits, SizeType32* outputIdsAfterSampling, SizeType32* targetOutputIds,
SizeType32* runtimeTopKDevicePtr, bool* maskBuffer, cudaStream_t stream)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_CHECK(beamWidth == 1);
{
dim3 block(1024);
dim3 grid(batchSize * beamWidth);
maskTargetLogitsKernel<<<grid, block, 0, stream>>>(targetLogits, batchSlots, beamWidth, vocabSizePadded,
finishedInput, maxBatchSize, batchUseDraftLogits, outputIdsAfterSampling, targetOutputIds,
runtimeTopKDevicePtr, maskBuffer);
}
sync_check_cuda_error();
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void invokeAcceptDraftTokens(SizeType32 batchSize, T* draftProbs, T* targetProbs, SizeType32 const* numsDraftTokens,
bool const* batchUseDraftLogits, TokenIdType const* draftIds, FinishedState const* finishedInput,
FinishedState* finishedOutput, curandState_t* curandState, SizeType32 const* batchSlots, SizeType32 maxDraftTokens,
SizeType32 beamWidth, SizeType32 vocabSizePadded, bool randomThreshold, float constantThreshold, SizeType32 step,
bool* batchIsAccepted, SizeType32* targetOutputIds, cudaStream_t stream)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_CHECK(beamWidth == 1);
{
dim3 block(1024);
dim3 grid(batchSize * beamWidth);
acceptDraftTokensKernel<<<grid, block, 0, stream>>>(draftProbs, targetProbs, numsDraftTokens,
batchUseDraftLogits, draftIds, finishedInput, finishedOutput, curandState, batchSlots, maxDraftTokens,
beamWidth, vocabSizePadded, randomThreshold, constantThreshold, step, batchIsAccepted, targetOutputIds);
}
sync_check_cuda_error();
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template void invokeMaskTargetLogits(SizeType32 batchSize, float* targetLogits, SizeType32 const* batchSlots,
SizeType32 beamWidth, SizeType32 vocabSizePadded, FinishedState const* finishedInput, SizeType32 maxBatchSize,
bool const* batchUseDraftLogits, SizeType32* outputIdsAfterSampling, SizeType32* targetOutputIds,
SizeType32* runtimeTopKDevicePtr, bool* maskBuffer, cudaStream_t stream);
template void invokeMaskTargetLogits(SizeType32 batchSize, half* targetLogits, SizeType32 const* batchSlots,
SizeType32 beamWidth, SizeType32 vocabSizePadded, FinishedState const* finishedInput, SizeType32 maxBatchSize,
bool const* batchUseDraftLogits, SizeType32* outputIdsAfterSampling, SizeType32* targetOutputIds,
SizeType32* runtimeTopKDevicePtr, bool* maskBuffer, cudaStream_t stream);
template void invokeAcceptDraftTokens(SizeType32 batchSize, float* draftProbs, float* targetProbs,
SizeType32 const* numsDraftTokens, bool const* batchUseDraftLogits, TokenIdType const* draftIds,
FinishedState const* finishedInput, FinishedState* finishedOutput, curandState_t* curandState,
SizeType32 const* batchSlots, SizeType32 maxDraftTokens, SizeType32 beamWidth, SizeType32 vocabSizePadded,
bool randomThreshold, float constantThreshold, SizeType32 step, bool* batchIsAccepted, SizeType32* targetOutputIds,
cudaStream_t stream);
template void invokeAcceptDraftTokens(SizeType32 batchSize, half* draftProbs, half* targetProbs,
SizeType32 const* numsDraftTokens, bool const* batchUseDraftLogits, TokenIdType const* draftIds,
FinishedState const* finishedInput, FinishedState* finishedOutput, curandState_t* curandState,
SizeType32 const* batchSlots, SizeType32 maxDraftTokens, SizeType32 beamWidth, SizeType32 vocabSizePadded,
bool randomThreshold, float constantThreshold, SizeType32 step, bool* batchIsAccepted, SizeType32* targetOutputIds,
cudaStream_t stream);
void invokeForwardAcceptedTokens(SizeType32 batchSize, SizeType32 const* batchSlots, bool* batchIsAccepted,
SizeType32* outputSequenceLengths, TokenIdType const* draftIds, TokenIdType** idsPtrs, SizeType32 step,
SizeType32 maxDraftTokens, TokenIdType const* endIds, FinishedState* finishedOutput, cudaStream_t stream)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
dim3 block(std::min(static_cast<uint32_t>(batchSize), 256u));
dim3 grid(divUp(static_cast<uint32_t>(batchSize), block.x));
forwardAcceptedTokensKernel<<<grid, block, 0, stream>>>(batchSize, batchSlots, batchIsAccepted,
outputSequenceLengths, draftIds, idsPtrs, step, maxDraftTokens, endIds, finishedOutput);
sync_check_cuda_error();
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
} // namespace tensorrt_llm::kernels::speculative_decoding