mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
365 lines
20 KiB
C++
365 lines
20 KiB
C++
/*
|
|
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/runtime/eagleBuffers.h"
|
|
|
|
#include "tensorrt_llm/common/assert.h"
|
|
#include "tensorrt_llm/common/cudaUtils.h"
|
|
#include "tensorrt_llm/kernels/speculativeDecoding/eagleDecodingKernels.h"
|
|
#include "tensorrt_llm/kernels/speculativeDecoding/explicitDraftTokensKernels.h"
|
|
#include "tensorrt_llm/runtime/common.h"
|
|
#include "tensorrt_llm/runtime/iBuffer.h"
|
|
|
|
namespace tksd = tensorrt_llm::kernels::speculative_decoding;
|
|
|
|
namespace tensorrt_llm::runtime
|
|
{
|
|
|
|
void EagleBuffers::Inputs::create(SizeType32 maxNumSequences, TllmRuntime const& runtime,
|
|
ModelConfig const& modelConfig, WorldConfig const& worldConfig)
|
|
{
|
|
auto const& manager = runtime.getBufferManager();
|
|
|
|
auto const& speculativeDecodingModule = modelConfig.getSpeculativeDecodingModule();
|
|
auto const maxNumPaths = speculativeDecodingModule.getMaxNumPaths();
|
|
auto const maxDraftPathLen = speculativeDecodingModule.getMaxDraftPathLen();
|
|
auto const maxPathLen = speculativeDecodingModule.getMaxPathLen();
|
|
auto const maxDecodingTokens = speculativeDecodingModule.getMaxDecodingTokens();
|
|
auto const maxDecodingDraftTokens = speculativeDecodingModule.getMaxDecodingDraftTokens();
|
|
|
|
auto constexpr TRTTokenIdType = runtime::TRTDataType<runtime::TokenIdType>::value;
|
|
|
|
temperatures = manager.gpu(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kFLOAT);
|
|
randomDataSample = manager.gpu(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kFLOAT);
|
|
randomDataValidation
|
|
= manager.gpu(ITensor::makeShape({maxNumSequences, maxNumPaths, maxDraftPathLen}), nvinfer1::DataType::kFLOAT);
|
|
draftTokens = manager.gpu(ITensor::makeShape({maxNumSequences, maxDecodingDraftTokens}), TRTTokenIdType);
|
|
draftLens = manager.gpu(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
|
|
draftPaths
|
|
= manager.gpu(ITensor::makeShape({maxNumSequences, maxNumPaths, maxPathLen}), nvinfer1::DataType::kINT32);
|
|
specDecodingGenerationLengths = manager.gpu(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
|
|
specDecodingPackedMasks
|
|
= manager.gpu(ITensor::makeShape({maxNumSequences, maxDecodingTokens, common::ceilDiv(maxDecodingTokens, 32)}),
|
|
nvinfer1::DataType::kINT32);
|
|
specDecodingPositionOffsets
|
|
= manager.gpu(ITensor::makeShape({maxNumSequences * maxDecodingTokens}), nvinfer1::DataType::kINT32);
|
|
|
|
eagleNetCtxRequestTypesHost = manager.pinnedPool(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
|
|
eagleNetCtxContextLengthsHost
|
|
= manager.pinnedPool(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
|
|
eagleNetCtxPastKeyValueLengthsHost
|
|
= manager.pinnedPool(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
|
|
eagleNetGenRequestTypesHost = manager.pinnedPool(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
|
|
eagleNetGenContextLengthsHost
|
|
= manager.pinnedPool(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
|
|
eagleNetGenPastKeyValueLengthsHost
|
|
= manager.pinnedPool(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
|
|
}
|
|
|
|
EagleBuffers::EagleBuffers(SizeType32 maxBatchSize, SizeType32 maxBeamWidth, runtime::BufferManager const& manager,
|
|
runtime::ModelConfig const& modelConfig, runtime::WorldConfig const& worldConfig,
|
|
executor::DecodingConfig const& decodingConfig, runtime::TllmRuntime const& runtime)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
TLLM_CHECK_WITH_INFO(maxBeamWidth == 1, "EAGLE does not support beam search");
|
|
|
|
auto const maxNumSequences = maxBatchSize;
|
|
|
|
auto const eagleModule = std::dynamic_pointer_cast<tensorrt_llm::runtime::EagleModule const>(
|
|
modelConfig.getSpeculativeDecodingModulePtr());
|
|
|
|
auto const numPaths = eagleModule->getMaxNumPaths();
|
|
auto const pathLen = eagleModule->getMaxPathLen();
|
|
auto const maxDecodingDraftTokens = eagleModule->getMaxDecodingDraftTokens();
|
|
|
|
auto constexpr TRTTokenIdType = runtime::TRTDataType<runtime::TokenIdType>::value;
|
|
|
|
// input tensors
|
|
engineInputs.temperatures = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kFLOAT);
|
|
|
|
engineInputs.draftTokens
|
|
= manager.gpu(ITensor::makeShape({maxNumSequences, maxDecodingDraftTokens}), TRTTokenIdType);
|
|
engineInputs.draftLens = manager.gpu(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
|
|
engineInputs.draftPaths
|
|
= manager.gpu(ITensor::makeShape({maxNumSequences, numPaths, pathLen}), nvinfer1::DataType::kINT32);
|
|
|
|
engineInputs.specDecodingGenerationLengths
|
|
= manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kINT32);
|
|
engineInputs.specDecodingPositionOffsets
|
|
= manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kINT32);
|
|
engineInputs.specDecodingPackedMasks = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kINT32);
|
|
|
|
engineInputs.randomDataSample = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kFLOAT);
|
|
engineInputs.randomDataValidation = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kFLOAT);
|
|
|
|
engineInputs.eagleNetCtxRequestTypesHost
|
|
= manager.emptyTensor(runtime::MemoryType::kPINNEDPOOL, nvinfer1::DataType::kINT32);
|
|
engineInputs.eagleNetCtxContextLengthsHost
|
|
= manager.emptyTensor(runtime::MemoryType::kPINNEDPOOL, nvinfer1::DataType::kINT32);
|
|
engineInputs.eagleNetCtxPastKeyValueLengthsHost
|
|
= manager.emptyTensor(runtime::MemoryType::kPINNEDPOOL, nvinfer1::DataType::kINT32);
|
|
engineInputs.eagleNetGenRequestTypesHost
|
|
= manager.emptyTensor(runtime::MemoryType::kPINNEDPOOL, nvinfer1::DataType::kINT32);
|
|
engineInputs.eagleNetGenContextLengthsHost
|
|
= manager.emptyTensor(runtime::MemoryType::kPINNEDPOOL, nvinfer1::DataType::kINT32);
|
|
engineInputs.eagleNetGenPastKeyValueLengthsHost
|
|
= manager.emptyTensor(runtime::MemoryType::kPINNEDPOOL, nvinfer1::DataType::kINT32);
|
|
|
|
// output tensors
|
|
engineOutputs.nextDraftTokens
|
|
= manager.gpu(ITensor::makeShape({maxNumSequences, numPaths, pathLen}), TRTTokenIdType);
|
|
engineOutputs.nextDraftLens = manager.gpu(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
|
|
engineOutputs.nextDraftPaths
|
|
= manager.gpu(ITensor::makeShape({maxNumSequences, numPaths, pathLen}), nvinfer1::DataType::kINT32);
|
|
|
|
engineOutputs.acceptedTokens
|
|
= manager.gpu(ITensor::makeShape({maxNumSequences, pathLen}), nvinfer1::DataType::kINT32);
|
|
engineOutputs.acceptedLens = manager.gpu(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
|
|
engineOutputs.acceptedPaths = manager.gpu(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
|
|
|
|
// helper tensors
|
|
auto const& stream = manager.getStream();
|
|
scanTempStorageBytes
|
|
= tksd::invokeScanGenerationLengths(nullptr, 0, nullptr, nullptr, maxNumSequences, stream.get());
|
|
reduceTempStorageBytes
|
|
= tksd::invokeReduceMaxGenerationLengths(nullptr, 0, nullptr, nullptr, maxNumSequences, stream.get());
|
|
scanReduceTempStorage = manager.gpu(std::max(reduceTempStorageBytes, scanTempStorageBytes));
|
|
cumSumGenerationLengths = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kINT32);
|
|
maxGenerationLength = manager.gpu(ITensor::makeShape({1}), nvinfer1::DataType::kINT32);
|
|
|
|
// pre-allocate empty tensors
|
|
reshape(0, maxNumSequences, modelConfig);
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
void EagleBuffers::reshape(
|
|
SizeType32 numCtxSequences, SizeType32 numGenSequences, runtime::ModelConfig const& modelConfig)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
auto const numSequences = numCtxSequences + numGenSequences;
|
|
|
|
auto const eagleModule = std::dynamic_pointer_cast<tensorrt_llm::runtime::EagleModule const>(
|
|
modelConfig.getSpeculativeDecodingModulePtr());
|
|
|
|
auto const maxDecodingTokens = eagleModule->getMaxDecodingTokens();
|
|
auto const maxDecodingDraftTokens = eagleModule->getMaxDecodingDraftTokens();
|
|
|
|
// input tensors
|
|
engineInputs.temperatures->reshape(ITensor::makeShape({numSequences}));
|
|
|
|
auto draftTokensShape = engineInputs.draftTokens->getShape();
|
|
draftTokensShape.d[0] = numSequences;
|
|
engineInputs.draftTokens->reshape(draftTokensShape);
|
|
auto draftLensShape = engineInputs.draftLens->getShape();
|
|
draftLensShape.d[0] = numSequences;
|
|
engineInputs.draftLens->reshape(draftLensShape);
|
|
auto draftPathsShape = engineInputs.draftPaths->getShape();
|
|
draftPathsShape.d[0] = numSequences;
|
|
engineInputs.draftPaths->reshape(draftPathsShape);
|
|
|
|
engineInputs.specDecodingGenerationLengths->reshape(ITensor::makeShape({numGenSequences}));
|
|
engineInputs.specDecodingPositionOffsets->reshape(ITensor::makeShape({numGenSequences, maxDecodingTokens}));
|
|
engineInputs.specDecodingPackedMasks->reshape(
|
|
ITensor::makeShape({numGenSequences * maxDecodingTokens, common::ceilDiv(maxDecodingTokens, 32)}));
|
|
|
|
engineInputs.randomDataSample->reshape(ITensor::makeShape({numSequences}));
|
|
engineInputs.randomDataValidation->reshape(ITensor::makeShape({numSequences}));
|
|
|
|
engineInputs.eagleNetCtxRequestTypesHost->reshape(ITensor::makeShape({numSequences, maxDecodingDraftTokens}));
|
|
engineInputs.eagleNetCtxContextLengthsHost->reshape(ITensor::makeShape({numSequences, maxDecodingDraftTokens}));
|
|
engineInputs.eagleNetCtxPastKeyValueLengthsHost->reshape(
|
|
ITensor::makeShape({numSequences, maxDecodingDraftTokens}));
|
|
engineInputs.eagleNetGenRequestTypesHost->reshape(ITensor::makeShape({numSequences, maxDecodingDraftTokens}));
|
|
engineInputs.eagleNetGenContextLengthsHost->reshape(ITensor::makeShape({numSequences, maxDecodingDraftTokens}));
|
|
engineInputs.eagleNetGenPastKeyValueLengthsHost->reshape(
|
|
ITensor::makeShape({numSequences, maxDecodingDraftTokens}));
|
|
|
|
cumSumGenerationLengths->reshape(ITensor::makeShape({numSequences + 1}));
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void EagleBuffers::setFromInputs(SizeType32 numCtxSequences, SizeType32 numGenSequences, SizeType32 vocabSizePadded,
|
|
ITensor const& seqSlots, EagleBuffers::Inputs const& draftBuffers, ITensor const& contextPositionIds,
|
|
runtime::EagleModule const& eagleModule, runtime::CudaStream const& stream) const
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
using runtime::bufferCast;
|
|
|
|
tksd::PackEagleParams params;
|
|
params.batchSize = numCtxSequences + numGenSequences;
|
|
params.maxNumPaths = eagleModule.getMaxNumPaths();
|
|
params.maxDecodingTokens = eagleModule.getMaxDecodingTokens();
|
|
params.maxPathLength = eagleModule.getMaxPathLen();
|
|
params.numContextRequests = numCtxSequences;
|
|
params.numGenerationRequests = numGenSequences;
|
|
|
|
params.batchSlots = bufferCast<SizeType32>(seqSlots);
|
|
|
|
// Outputs from decoder -- inputs to the packing kernel
|
|
params.inputTemperatures = bufferCast<float>(*draftBuffers.temperatures);
|
|
params.inputRandomDataSample = bufferCast<float>(*draftBuffers.randomDataSample);
|
|
params.inputRandomDataValidation = bufferCast<float>(*draftBuffers.randomDataValidation);
|
|
|
|
params.inputNextDraftTokens = bufferCast<runtime::TokenIdType>(*draftBuffers.draftTokens);
|
|
params.inputNextDraftLens = bufferCast<SizeType32>(*draftBuffers.draftLens);
|
|
params.inputNextDraftPaths = bufferCast<SizeType32>(*draftBuffers.draftPaths);
|
|
|
|
params.inputSpecDecodingGenerationLengths = bufferCast<SizeType32>(*draftBuffers.specDecodingGenerationLengths);
|
|
params.inputSpecDecodingPositionOffsets = bufferCast<SizeType32>(*draftBuffers.specDecodingPositionOffsets);
|
|
params.inputSpecDecodingPackedMasks = bufferCast<int32_t>(*draftBuffers.specDecodingPackedMasks);
|
|
|
|
// Outputs of the packing kernel -- inputs to the engine
|
|
params.outputTemperatures = bufferCast<float>(*engineInputs.temperatures);
|
|
params.outputRandomDataSample = bufferCast<float>(*engineInputs.randomDataSample);
|
|
params.outputRandomDataValidation = bufferCast<float>(*engineInputs.randomDataValidation);
|
|
|
|
params.outputNextDraftTokens = bufferCast<runtime::TokenIdType>(*engineInputs.draftTokens);
|
|
params.outputNextDraftLens = bufferCast<SizeType32>(*engineInputs.draftLens);
|
|
params.outputNextDraftPaths = bufferCast<SizeType32>(*engineInputs.draftPaths);
|
|
|
|
params.outputSpecDecodingGenerationLengths = bufferCast<SizeType32>(*engineInputs.specDecodingGenerationLengths);
|
|
params.outputSpecDecodingPositionOffsets = bufferCast<SizeType32>(*engineInputs.specDecodingPositionOffsets);
|
|
params.outputSpecDecodingPackedMasks = bufferCast<int32_t>(*engineInputs.specDecodingPackedMasks);
|
|
|
|
params.maxGenerationLength = bufferCast<SizeType32>(*maxGenerationLength);
|
|
params.cumSumGenerationLengths = bufferCast<SizeType32>(*cumSumGenerationLengths);
|
|
|
|
params.checkParams();
|
|
|
|
// Pack tensors from batch slot position to continuous array
|
|
tksd::invokePackEagleGenerationLengths(params, stream.get());
|
|
|
|
if (numGenSequences)
|
|
{
|
|
// Compute inclusive sum and max
|
|
tksd::invokeScanReduceGenerationLengths(numGenSequences,
|
|
bufferCast<SizeType32>(*engineInputs.specDecodingGenerationLengths),
|
|
bufferCast<uint8_t>(*scanReduceTempStorage), scanTempStorageBytes,
|
|
bufferCast<SizeType32>(*cumSumGenerationLengths), bufferCast<uint8_t>(*scanReduceTempStorage),
|
|
reduceTempStorageBytes, bufferCast<SizeType32>(*maxGenerationLength), stream.get());
|
|
}
|
|
|
|
// Pack tensors from batch slot position to continuous array
|
|
tksd::invokePackEagle(params, stream.get());
|
|
|
|
// Pack host data.
|
|
for (SizeType32 bi = 0; bi < params.batchSize; ++bi)
|
|
{
|
|
auto const batchSlot = params.batchSlots[bi];
|
|
auto const maxDecodingDraftTokens = params.maxDecodingTokens - 1;
|
|
for (SizeType32 ti = 0; ti < maxDecodingDraftTokens; ++ti)
|
|
{
|
|
bufferCast<SizeType32>(*engineInputs.eagleNetCtxRequestTypesHost)[bi * maxDecodingDraftTokens + ti]
|
|
= bufferCast<SizeType32>(
|
|
*draftBuffers.eagleNetCtxRequestTypesHost)[batchSlot * maxDecodingDraftTokens + ti];
|
|
bufferCast<SizeType32>(*engineInputs.eagleNetCtxContextLengthsHost)[bi * maxDecodingDraftTokens + ti]
|
|
= bufferCast<SizeType32>(
|
|
*draftBuffers.eagleNetCtxContextLengthsHost)[batchSlot * maxDecodingDraftTokens + ti];
|
|
bufferCast<SizeType32>(*engineInputs.eagleNetCtxPastKeyValueLengthsHost)[bi * maxDecodingDraftTokens + ti]
|
|
= bufferCast<SizeType32>(
|
|
*draftBuffers.eagleNetCtxPastKeyValueLengthsHost)[batchSlot * maxDecodingDraftTokens + ti];
|
|
bufferCast<SizeType32>(*engineInputs.eagleNetGenRequestTypesHost)[bi * maxDecodingDraftTokens + ti]
|
|
= bufferCast<SizeType32>(
|
|
*draftBuffers.eagleNetGenRequestTypesHost)[batchSlot * maxDecodingDraftTokens + ti];
|
|
bufferCast<SizeType32>(*engineInputs.eagleNetGenContextLengthsHost)[bi * maxDecodingDraftTokens + ti]
|
|
= bufferCast<SizeType32>(
|
|
*draftBuffers.eagleNetGenContextLengthsHost)[batchSlot * maxDecodingDraftTokens + ti];
|
|
bufferCast<SizeType32>(*engineInputs.eagleNetGenPastKeyValueLengthsHost)[bi * maxDecodingDraftTokens + ti]
|
|
= bufferCast<SizeType32>(
|
|
*draftBuffers.eagleNetGenPastKeyValueLengthsHost)[batchSlot * maxDecodingDraftTokens + ti];
|
|
}
|
|
}
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
void EagleBuffers::setFromInputs(SizeType32 numCtxSequences, SizeType32 numGenSequences, ITensor const& requestTypes,
|
|
ITensor const& seqSlots, EagleBuffers::Inputs const& draftBuffers, ITensor const& contextPositionIds,
|
|
runtime::TllmRuntime const& runtime, runtime::ModelConfig const& modelConfig,
|
|
runtime::WorldConfig const& worldConfig) const
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
auto const& stream = runtime.getStream();
|
|
|
|
auto const eagleModule
|
|
= std::dynamic_pointer_cast<runtime::EagleModule const>(modelConfig.getSpeculativeDecodingModulePtr());
|
|
|
|
auto const vocabSizePadded = modelConfig.getVocabSizePadded(worldConfig.getSize());
|
|
|
|
auto const dtype = modelConfig.getDataType();
|
|
|
|
switch (dtype)
|
|
{
|
|
case nvinfer1::DataType::kFLOAT:
|
|
setFromInputs<float>(numCtxSequences, numGenSequences, vocabSizePadded, seqSlots, draftBuffers,
|
|
contextPositionIds, *eagleModule, stream);
|
|
break;
|
|
case nvinfer1::DataType::kHALF:
|
|
setFromInputs<half>(numCtxSequences, numGenSequences, vocabSizePadded, seqSlots, draftBuffers,
|
|
contextPositionIds, *eagleModule, stream);
|
|
break;
|
|
default: TLLM_THROW("DataType %d not supported in EagleBuffers", static_cast<SizeType32>(dtype)); break;
|
|
}
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
void EagleBuffers::insertInputTensors(
|
|
TensorMap& inputBuffers, TensorMap& outputBuffers, runtime::WorldConfig const& /* worldConfig */) const
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
// inputs
|
|
inputBuffers.insert_or_assign("eagle_temperature", engineInputs.temperatures);
|
|
|
|
inputBuffers.insert_or_assign("spec_decoding_generation_lengths", engineInputs.specDecodingGenerationLengths);
|
|
inputBuffers.insert_or_assign("spec_decoding_position_offsets", engineInputs.specDecodingPositionOffsets);
|
|
inputBuffers.insert_or_assign("spec_decoding_packed_mask", engineInputs.specDecodingPackedMasks);
|
|
|
|
inputBuffers.insert_or_assign("rand_data_sample", engineInputs.randomDataSample);
|
|
inputBuffers.insert_or_assign("rand_data_validation", engineInputs.randomDataValidation);
|
|
|
|
inputBuffers.insert_or_assign("draft_tokens", engineInputs.draftTokens);
|
|
inputBuffers.insert_or_assign("draft_lens", engineInputs.draftLens);
|
|
inputBuffers.insert_or_assign("draft_paths", engineInputs.draftPaths);
|
|
|
|
inputBuffers.insert_or_assign("host_ctx_eagle_net_request_types", engineInputs.eagleNetCtxRequestTypesHost);
|
|
inputBuffers.insert_or_assign("host_ctx_eagle_net_context_lengths", engineInputs.eagleNetCtxContextLengthsHost);
|
|
inputBuffers.insert_or_assign(
|
|
"host_ctx_eagle_net_past_key_value_lengths", engineInputs.eagleNetCtxPastKeyValueLengthsHost);
|
|
inputBuffers.insert_or_assign("host_gen_eagle_net_request_types", engineInputs.eagleNetGenRequestTypesHost);
|
|
inputBuffers.insert_or_assign("host_gen_eagle_net_context_lengths", engineInputs.eagleNetGenContextLengthsHost);
|
|
inputBuffers.insert_or_assign(
|
|
"host_gen_eagle_net_past_key_value_lengths", engineInputs.eagleNetGenPastKeyValueLengthsHost);
|
|
|
|
// outputs
|
|
outputBuffers.insert_or_assign("next_draft_tokens", engineOutputs.nextDraftTokens);
|
|
outputBuffers.insert_or_assign("next_draft_lens", engineOutputs.nextDraftLens);
|
|
|
|
outputBuffers.insert_or_assign("accepted_tokens", engineOutputs.acceptedTokens);
|
|
outputBuffers.insert_or_assign("num_accepted_tokens", engineOutputs.acceptedLens);
|
|
outputBuffers.insert_or_assign("accepted_paths", engineOutputs.acceptedPaths);
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
} // namespace tensorrt_llm::runtime
|