mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: RunningLeon <mnsheng@yeah.net> Co-authored-by: Tlntin <TlntinDeng01@Gmail.com> Co-authored-by: ZHENG, Zhen <zhengzhen.z@qq.com> Co-authored-by: Pham Van Ngoan <ngoanpham1196@gmail.com> Co-authored-by: Nathan Price <nathan@abridge.com> Co-authored-by: Tushar Goel <tushar.goel.ml@gmail.com> Co-authored-by: Mati <132419219+matichon-vultureprime@users.noreply.github.com>
101 lines
3.9 KiB
Python
101 lines
3.9 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
import unittest
|
|
|
|
import torch
|
|
from parameterized import parameterized
|
|
from transformers.models.bloom.modeling_bloom import build_alibi_tensor
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Tensor
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from utils.util import create_session, run_session, unittest_name_func
|
|
|
|
|
|
class TestAlibi(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level('error')
|
|
|
|
def create_random_bool_mask(self, batch_size, seq_len):
|
|
mask = torch.zeros(size=[batch_size, seq_len],
|
|
dtype=torch.bool,
|
|
device="cuda")
|
|
seq_lens = torch.randint(low=1,
|
|
high=seq_len + 1,
|
|
size=[batch_size],
|
|
device="cuda")
|
|
|
|
for b in range(batch_size):
|
|
mask[b, :seq_lens[b]] = True
|
|
|
|
return mask
|
|
|
|
# We don't run alibi in FP16, so only check FP32 here.
|
|
@parameterized.expand([(1, 64, 32), (16, 1, 64), (24, 20, 500),
|
|
(32, 128, 60), (64, 32, 1024), (80, 12, 20),
|
|
(112, 4, 389)],
|
|
name_func=unittest_name_func)
|
|
def test_alibi_biases(self, num_heads, batch_size, seq_len):
|
|
|
|
# construct trt network
|
|
builder = tensorrt_llm.Builder()
|
|
network = builder.create_network()
|
|
with tensorrt_llm.net_guard(network):
|
|
trt_key = Tensor(name='fake_key',
|
|
shape=(seq_len, ),
|
|
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
|
|
|
|
key_len = tensorrt_llm.functional.shape(trt_key, 0)
|
|
slopes = tensorrt_llm.functional.constant(
|
|
tensorrt_llm.functional.generate_alibi_slopes(
|
|
num_heads=num_heads))
|
|
output = tensorrt_llm.functional.generate_alibi_biases(
|
|
slopes, key_len)
|
|
output.mark_output('output')
|
|
|
|
# trt run
|
|
inputs = {
|
|
'fake_key': torch.empty((seq_len, ),
|
|
dtype=torch.int32,
|
|
device="cuda")
|
|
}
|
|
session = create_session(builder, network, precision="float32")
|
|
outputs = run_session(session, inputs)
|
|
|
|
trt_alibi_output = outputs['output']
|
|
|
|
# transformers reference
|
|
binary_mask = self.create_random_bool_mask(batch_size, seq_len)
|
|
ref = build_alibi_tensor(binary_mask, num_heads, torch.float32)
|
|
ref = ref.reshape(batch_size, num_heads, 1, seq_len)
|
|
|
|
# We only require that the alibi bias matches in the "valid" regions. Our TRT,
|
|
# implementation differs in this regard for efficiency reasons but it does not matter
|
|
# because these values will get masked before the softmax.
|
|
binary_mask = binary_mask.reshape(batch_size, 1, 1, seq_len)
|
|
ref *= binary_mask
|
|
|
|
trt_alibi_output = torch.repeat_interleave(trt_alibi_output,
|
|
batch_size,
|
|
dim=0)
|
|
trt_alibi_output *= binary_mask
|
|
|
|
# compare diff
|
|
torch.testing.assert_close(trt_alibi_output, ref, atol=1e-3, rtol=1e-2)
|