mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
Co-authored-by: DreamGenX <x@dreamgen.com> Co-authored-by: Ace-RR <78812427+Ace-RR@users.noreply.github.com> Co-authored-by: bprus <39293131+bprus@users.noreply.github.com> Co-authored-by: janpetrov <janpetrov@icloud.com>
102 lines
3.3 KiB
Python
102 lines
3.3 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
import unittest
|
|
from itertools import product
|
|
|
|
import numpy as np
|
|
import torch
|
|
from parameterized import parameterized
|
|
|
|
import tensorrt_llm
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from utils.util import create_session, run_session
|
|
|
|
|
|
class TestArange(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level('error')
|
|
|
|
def test_arange_int(self):
|
|
# test data
|
|
start = 0
|
|
end = 128
|
|
|
|
# construct trt network
|
|
builder = tensorrt_llm.Builder()
|
|
network = builder.create_network()
|
|
with tensorrt_llm.net_guard(network):
|
|
|
|
output = tensorrt_llm.functional.arange(start=start,
|
|
end=end,
|
|
dtype="int32")
|
|
output.mark_output('output', "int32")
|
|
|
|
# trt run
|
|
inputs = {}
|
|
session = create_session(builder, network, precision="float32")
|
|
outputs = run_session(session, inputs)
|
|
|
|
ref = torch.arange(start, end).int().cuda()
|
|
torch.testing.assert_close(outputs['output'], ref)
|
|
|
|
@parameterized.expand(
|
|
list(
|
|
product(['int32', 'int64'], ['int32', 'int64'],
|
|
['int32', 'int64', 'float32', 'float16'])))
|
|
def test_arange_tensor(self,
|
|
s_dtype='int32',
|
|
e_dtype='int32',
|
|
r_dtype='int32'):
|
|
# test data
|
|
s = 0
|
|
e = 128
|
|
s_np_dtype = tensorrt_llm._utils.str_dtype_to_np(s_dtype)
|
|
e_np_dtype = tensorrt_llm._utils.str_dtype_to_np(e_dtype)
|
|
|
|
# construct trt network
|
|
builder = tensorrt_llm.Builder()
|
|
network = builder.create_network()
|
|
with tensorrt_llm.net_guard(network):
|
|
|
|
start = tensorrt_llm.functional.constant(
|
|
np.array(s, dtype=s_np_dtype))
|
|
end = tensorrt_llm.functional.constant(
|
|
np.array([e], dtype=e_np_dtype))
|
|
|
|
output = tensorrt_llm.functional.arange(start=start,
|
|
end=end,
|
|
dtype=r_dtype)
|
|
|
|
output.mark_output('output', r_dtype)
|
|
|
|
# trt run
|
|
inputs = {}
|
|
session = create_session(
|
|
builder,
|
|
network,
|
|
precision="float32" if r_dtype != 'float16' else 'float16')
|
|
outputs = run_session(session, inputs)
|
|
|
|
# pytorch run
|
|
ref = torch.arange(
|
|
s, e, dtype=tensorrt_llm.str_dtype_to_torch(r_dtype)).cuda()
|
|
|
|
# compare diff
|
|
torch.testing.assert_close(outputs['output'], ref)
|