TensorRT-LLMs/tests/functional/test_arange.py
石晓伟 2a115dae84
Update TensorRT-LLM (#1793)
Co-authored-by: DreamGenX <x@dreamgen.com>
Co-authored-by: Ace-RR <78812427+Ace-RR@users.noreply.github.com>
Co-authored-by: bprus <39293131+bprus@users.noreply.github.com>
Co-authored-by: janpetrov <janpetrov@icloud.com>
2024-06-18 18:18:23 +08:00

102 lines
3.3 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
from itertools import product
import numpy as np
import torch
from parameterized import parameterized
import tensorrt_llm
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import create_session, run_session
class TestArange(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
def test_arange_int(self):
# test data
start = 0
end = 128
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
output = tensorrt_llm.functional.arange(start=start,
end=end,
dtype="int32")
output.mark_output('output', "int32")
# trt run
inputs = {}
session = create_session(builder, network, precision="float32")
outputs = run_session(session, inputs)
ref = torch.arange(start, end).int().cuda()
torch.testing.assert_close(outputs['output'], ref)
@parameterized.expand(
list(
product(['int32', 'int64'], ['int32', 'int64'],
['int32', 'int64', 'float32', 'float16'])))
def test_arange_tensor(self,
s_dtype='int32',
e_dtype='int32',
r_dtype='int32'):
# test data
s = 0
e = 128
s_np_dtype = tensorrt_llm._utils.str_dtype_to_np(s_dtype)
e_np_dtype = tensorrt_llm._utils.str_dtype_to_np(e_dtype)
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
start = tensorrt_llm.functional.constant(
np.array(s, dtype=s_np_dtype))
end = tensorrt_llm.functional.constant(
np.array([e], dtype=e_np_dtype))
output = tensorrt_llm.functional.arange(start=start,
end=end,
dtype=r_dtype)
output.mark_output('output', r_dtype)
# trt run
inputs = {}
session = create_session(
builder,
network,
precision="float32" if r_dtype != 'float16' else 'float16')
outputs = run_session(session, inputs)
# pytorch run
ref = torch.arange(
s, e, dtype=tensorrt_llm.str_dtype_to_torch(r_dtype)).cuda()
# compare diff
torch.testing.assert_close(outputs['output'], ref)