TensorRT-LLMs/tests/functional/test_embedding_single_gpu.py
Kaiyu Xie f14d1d433c
Update TensorRT-LLM (#2389)
* Update TensorRT-LLM

---------

Co-authored-by: Alessio Netti <netti.alessio@gmail.com>
2024-10-29 22:24:38 +08:00

90 lines
3.0 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
import torch
from parameterized import parameterized
import tensorrt_llm
from tensorrt_llm import Tensor
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import create_session, run_session, unittest_name_func
class TestEmbedding(unittest.TestCase):
def setUp(self):
torch.random.manual_seed(0)
tensorrt_llm.logger.set_level('error')
@parameterized.expand([('float32', ), ('float16', )],
name_func=unittest_name_func)
def test_embedding(self, dtype):
# meta data
batch_size = 10
vocab_size = 1000
n_embed = 1024
# test data
## input index
index_shape = (batch_size, )
index_data = torch.randint(0,
vocab_size,
index_shape,
dtype=torch.int32,
device="cuda")
## weight data
weight_data = torch.rand(vocab_size,
n_embed,
dtype=tensorrt_llm.str_dtype_to_torch(dtype),
device="cuda")
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
index = Tensor(name='index',
shape=index_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
weight = Tensor(name='weight',
shape=weight_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.embedding(input=index,
weight=weight)
output.mark_output('output', dtype)
# trt run
session = create_session(builder, network, precision=dtype)
inputs = {
'index': index_data,
'weight': weight_data,
}
outputs = run_session(session, inputs)
# pytorch run
embedding = torch.nn.Embedding.from_pretrained(weight_data)
ref = embedding(index_data)
# compare diff
torch.testing.assert_close(ref, outputs['output'])