TensorRT-LLMs/tests/functional/test_gather_nd.py
石晓伟 2a115dae84
Update TensorRT-LLM (#1793)
Co-authored-by: DreamGenX <x@dreamgen.com>
Co-authored-by: Ace-RR <78812427+Ace-RR@users.noreply.github.com>
Co-authored-by: bprus <39293131+bprus@users.noreply.github.com>
Co-authored-by: janpetrov <janpetrov@icloud.com>
2024-06-18 18:18:23 +08:00

201 lines
8.0 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
# isort: off
import torch
# isort: on
from parameterized import parameterized
import tensorrt_llm
from tensorrt_llm import Tensor
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import create_session, run_session
class TestGatherND(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
@parameterized.expand([
(
[
[91, 92, 93, 95, 94, 96, 97, 00,
00], # 7 effective tokens and 2 ignored.
[93, 94, 95, 92, 95, 96, 93, 97, 96], # 9 effective tokens
],
[
[
[0, 1, 2, 3],
[0, 1, 4, 5],
[0, 1, 2, 6],
],
[
[0, 1, 2, 3],
[0, 4, 5, 6],
[0, 1, 7, 8],
],
],
[ # Assuming a batch of two sequences, each has 3 beams of 4 tokens.
[
[91, 92, 93, 95],
[91, 92, 94, 96],
[91, 92, 93, 97],
],
[
[93, 94, 95, 92],
[93, 95, 96, 93],
[93, 94, 97, 96],
],
],
),
([[[0, 1], [2, 3]], [[4, 5], [6, 7]]], [[1, 0, 1], [0,
1, 0]], [[[2, 3],
[0, 1],
[2, 3]],
[[4, 5],
[6, 7],
[4, 5]]]),
(
torch.rand((2, 9, 4), dtype=torch.float32, device="cuda"),
torch.tensor([[[0, 1, 2, 3, 4, 5], [0, 1, 3, 4, 5, 6],
[0, 1, 4, 5, 6, 7], [0, 2, 3, 4, 6, 8]],
[[0, 1, 2, 3, 4, 5], [0, 1, 3, 4, 5, 7],
[0, 2, 3, 5, 6, 7], [0, 3, 4, 5, 6, 7]]],
device="cuda"),
[],
),
])
def test_gatherND(self, data, indices, ref):
dtype = "float32"
data = data if isinstance(data,
torch.Tensor) else torch.tensor(data).cuda()
indices = indices if isinstance(
indices, torch.Tensor) else torch.tensor(indices).cuda()
ref = ref if isinstance(ref, torch.Tensor) else torch.tensor(ref).cuda()
indices = indices.unsqueeze(-1) # needed for TRT gatherND
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
d = Tensor(name='d',
shape=data.shape,
dtype=tensorrt_llm.torch_dtype_to_trt(data.dtype))
idx = Tensor(name='idx',
shape=indices.shape,
dtype=tensorrt_llm.torch_dtype_to_trt(indices.dtype))
output = tensorrt_llm.functional.gather_nd(d, idx, 1)
output.mark_output('output')
# trt run
session = create_session(builder, network, precision=dtype)
inputs = {'d': data, 'idx': indices}
outputs = run_session(session, inputs)
# compare diff
indices = indices.squeeze(-1)
tref = torch.stack([data[i, indices[i]] for i in range(data.shape[0])])
if ref.numel() == 0:
torch.testing.assert_close(tref, outputs['output'])
else:
torch.testing.assert_close(ref, outputs['output'])
torch.testing.assert_close(ref, tref)
@parameterized.expand([
([[91, 92, 93, 95, -1, -1, 94, 96, -1, -1, -1, 97],
[93, 94, 95, 92, -1, 95, 96, 93, -1, -1, 97, 96]], [[0, 0], [0, 1],
[0, 2], [0, 3],
[0, 6], [0, 7],
[0, 11], [1, 0],
[1, 1], [1, 2],
[1, 3], [1, 5],
[1, 6], [1, 7],
[1, 10], [1, 11]],
[91, 92, 93, 95, 94, 96, 97, 93, 94, 95, 92, 95, 96, 93, 97, 96])
])
def test_gatherND_b0(self, data, indices, ref):
dtype = "float32"
data = data if isinstance(data,
torch.Tensor) else torch.tensor(data).cuda()
indices = indices if isinstance(
indices, torch.Tensor) else torch.tensor(indices).cuda()
ref = ref if isinstance(ref, torch.Tensor) else torch.tensor(ref).cuda()
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
d = Tensor(name='d',
shape=data.shape,
dtype=tensorrt_llm.torch_dtype_to_trt(data.dtype))
idx = Tensor(name='idx',
shape=indices.shape,
dtype=tensorrt_llm.torch_dtype_to_trt(indices.dtype))
output = tensorrt_llm.functional.gather_nd(d, idx, 0)
output.mark_output('output')
# trt run
session = create_session(builder, network, precision=dtype)
inputs = {'d': data, 'idx': indices}
outputs = run_session(session, inputs)
# compare diff
tref = data[indices[:, 0], indices[:, 1]]
if ref.numel() == 0:
torch.testing.assert_close(tref, outputs['output'])
else:
torch.testing.assert_close(ref, outputs['output'])
torch.testing.assert_close(ref, tref)
def test_gatherND_selectH(self):
dtype = "float32"
# This usecase is used to gather for validated end-tokens (diff stopping point for diff seqs)
data = torch.rand((2, 9, 4), dtype=torch.float32, device="cuda")
indices = torch.randint(9, size=(2, ), dtype=torch.int32, device="cuda")
indices = torch.stack(
[torch.arange(2, dtype=torch.int32).cuda(), indices], dim=1)
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
d = Tensor(name='d',
shape=data.shape,
dtype=tensorrt_llm.torch_dtype_to_trt(data.dtype))
idx = Tensor(name='idx',
shape=indices.shape,
dtype=tensorrt_llm.torch_dtype_to_trt(indices.dtype))
output = tensorrt_llm.functional.gather_nd(d, idx, 0)
output.mark_output('output')
# trt run
session = create_session(builder, network, precision=dtype)
inputs = {'d': data, 'idx': indices}
outputs = run_session(session, inputs)
# pytorch run
ref = data[indices[:, 0], indices[:, 1]]
# compare diff
torch.testing.assert_close(ref, outputs['output'])