mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
189 lines
6.9 KiB
Python
189 lines
6.9 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
from itertools import product
|
|
|
|
import pytest
|
|
|
|
# isort: off
|
|
import torch
|
|
# isort: on
|
|
import os
|
|
import sys
|
|
|
|
from cuda import cudart
|
|
from parameterized import parameterized
|
|
from polygraphy.backend.trt import CreateConfig, EngineFromNetwork
|
|
|
|
import tensorrt_llm as tllm
|
|
from tensorrt_llm import Mapping, Tensor
|
|
from tensorrt_llm.functional import (AllReduceConfig, AllReduceFusionOp,
|
|
AllReduceFusionParams, AllReduceStrategy,
|
|
allreduce)
|
|
from tensorrt_llm.plugin.plugin import current_all_reduce_helper
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from utils.util import unittest_name_func
|
|
|
|
|
|
def rms_norm(x: torch.Tensor, weight: torch.Tensor = None, eps: float = 1e-6):
|
|
y = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
|
|
if weight is not None:
|
|
y = y * weight
|
|
return y
|
|
|
|
|
|
class TestCommunicationPlugin(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
torch.manual_seed(20240603)
|
|
torch.cuda.manual_seed(20240603)
|
|
tllm.logger.set_level('error')
|
|
self.world_size = tllm.mpi_world_size()
|
|
self.rank = tllm.mpi_rank()
|
|
torch.cuda.set_device(self.rank)
|
|
cudart.cudaSetDevice(self.rank)
|
|
self.reference_tensors = [
|
|
torch.full([10000000], i + 1, dtype=torch.float32, device="cuda")
|
|
for i in range(self.world_size)
|
|
]
|
|
self.mapping = Mapping(self.world_size,
|
|
self.rank,
|
|
self.world_size,
|
|
tp_size=self.world_size)
|
|
|
|
@parameterized.expand(list(
|
|
product(['bfloat16', 'float16'], [
|
|
AllReduceStrategy.NCCL, AllReduceStrategy.ONESHOT,
|
|
AllReduceStrategy.TWOSHOT
|
|
], [AllReduceConfig(0)], [1, 4, 16, 64], [4096, 8192, 12288])),
|
|
name_func=unittest_name_func)
|
|
def test_allreduce(self, dtype: str, strategy: AllReduceStrategy,
|
|
config: AllReduceConfig, token_num: int,
|
|
hidden_size: int):
|
|
if self.world_size == 1:
|
|
pytest.skip("Skip single GPU NCCL")
|
|
if strategy == AllReduceStrategy.NCCL and config != AllReduceConfig(0):
|
|
pytest.skip("NCCL with specific config discarded")
|
|
size = token_num * hidden_size
|
|
workspace = None
|
|
torch_dtype = tllm._utils.str_dtype_to_torch(dtype)
|
|
dtype_size = torch.finfo(torch_dtype).bits // 8
|
|
allreduce_ref = torch.zeros(self.reference_tensors[0][:size].shape,
|
|
dtype=torch_dtype,
|
|
device="cuda").reshape(
|
|
token_num, hidden_size)
|
|
residual = torch.rand(allreduce_ref.shape,
|
|
dtype=torch_dtype,
|
|
device="cuda")
|
|
weight = torch.rand((1, hidden_size), dtype=torch_dtype, device="cuda")
|
|
bias = torch.rand((1, hidden_size), dtype=torch_dtype, device="cuda")
|
|
eps = 1e-6
|
|
|
|
for i in range(self.world_size):
|
|
allreduce_ref = allreduce_ref + self.reference_tensors[i][:size].to(
|
|
torch_dtype).reshape(token_num, hidden_size)
|
|
allreduce_ref = allreduce_ref + bias + residual
|
|
allreduce_ref = rms_norm(allreduce_ref, weight, eps)
|
|
|
|
builder = tllm.Builder()
|
|
net = builder.create_network()
|
|
_, workspace = current_all_reduce_helper().allocate_workspace(
|
|
self.mapping, size * dtype_size)
|
|
|
|
input = self.reference_tensors[self.rank][:size].to(
|
|
torch_dtype).reshape(token_num, hidden_size)
|
|
|
|
with tllm.net_guard(net):
|
|
network = tllm.default_trtnet()
|
|
|
|
x = Tensor(name='x',
|
|
shape=input.shape,
|
|
dtype=tllm.str_dtype_to_trt(dtype))
|
|
y = Tensor(name='y',
|
|
shape=bias.shape,
|
|
dtype=tllm.str_dtype_to_trt(dtype))
|
|
z = Tensor(name='z',
|
|
shape=residual.shape,
|
|
dtype=tllm.str_dtype_to_trt(dtype))
|
|
w = Tensor(name='w',
|
|
shape=weight.shape,
|
|
dtype=tllm.str_dtype_to_trt(dtype))
|
|
current_all_reduce_helper().set_workspace_tensor(self.mapping)
|
|
|
|
current = x
|
|
current, z = allreduce(
|
|
current,
|
|
self.mapping.tp_group,
|
|
strategy,
|
|
config,
|
|
reduce_fusion_params=AllReduceFusionParams(
|
|
AllReduceFusionOp.RESIDUAL_RMS_NORM,
|
|
bias=y,
|
|
residual=z,
|
|
norm_weight=w,
|
|
eps=eps),
|
|
)
|
|
output = current.trt_tensor
|
|
|
|
output.name = 'output'
|
|
output.dtype = tllm.str_dtype_to_trt(dtype)
|
|
network.mark_output(output)
|
|
|
|
build_engine = EngineFromNetwork(
|
|
(builder.trt_builder, net.trt_network),
|
|
config=CreateConfig(
|
|
fp16=(dtype == 'float16'),
|
|
bf16=(dtype == 'bfloat16'),
|
|
precision_constraints='obey',
|
|
),
|
|
)
|
|
|
|
output = torch.zeros_like(input)
|
|
|
|
stream = torch.cuda.current_stream()
|
|
feed_dict = {
|
|
'x': input,
|
|
'y': bias,
|
|
'z': residual,
|
|
'w': weight,
|
|
'all_reduce_workspace': workspace
|
|
}
|
|
|
|
session = tllm.runtime.Session.from_engine(build_engine())
|
|
session.run(inputs=feed_dict,
|
|
outputs={"output": output},
|
|
stream=stream.cuda_stream)
|
|
torch.cuda.synchronize()
|
|
|
|
close = torch.isclose(allreduce_ref, output, rtol=1e-2, atol=1e-3)
|
|
if not torch.all(close):
|
|
not_close_a = allreduce_ref[~close]
|
|
not_close_b = output[~close]
|
|
print("rank {}, \n{}\n{}".format(self.rank, allreduce_ref, output))
|
|
print("mismatch value:")
|
|
print("ref:", not_close_a)
|
|
print("output:", not_close_b)
|
|
|
|
self.assertTrue(
|
|
torch.allclose(output.cpu(),
|
|
allreduce_ref.cpu(),
|
|
rtol=1e-2,
|
|
atol=1e-3))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|