TensorRT-LLMs/tests/functional/test_scatter.py
Kaiyu Xie b777bd6475
Update TensorRT-LLM (#1725)
* Update TensorRT-LLM

---------

Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: Tlntin <TlntinDeng01@Gmail.com>
Co-authored-by: ZHENG, Zhen <zhengzhen.z@qq.com>
Co-authored-by: Pham Van Ngoan <ngoanpham1196@gmail.com>
Co-authored-by: Nathan Price <nathan@abridge.com>
Co-authored-by: Tushar Goel <tushar.goel.ml@gmail.com>
Co-authored-by: Mati <132419219+matichon-vultureprime@users.noreply.github.com>
2024-06-04 20:26:32 +08:00

103 lines
3.8 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
import torch
from parameterized import parameterized
import tensorrt_llm
from tensorrt_llm import Tensor
from tensorrt_llm._utils import str_dtype_to_torch
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import create_session, run_session
class TestScatter(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
@parameterized.expand([
(
[
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
],
[
[1, 0, 2],
[0, 2, 1],
],
[[1.0, 1.1, 1.2], [2.0, 2.1, 2.2]],
0,
),
([[1, 2, 3], [4, 5, 6]], [[1, 2], [0, 1]], [[-1, -2], [-3, -4]], 1),
(
[[[-3.0, -2.0, -1.0, 10.0, -25.0]], [[0.0, 1.0, 2.0, -2.0, -1.0]]],
[[[1, 2, 3, 0, 4]], [[4, 1, 2, 3, 0]]],
[[[-1.0, 2.4, 3.2, 10.8, 8.9]], [[0, -11.2, 34.2, 223.9, -100]]],
2,
),
])
def test_scatter(self, input_data, indices, updates, dim):
dtype = 'float32'
torch_dtype = str_dtype_to_torch(dtype)
input_data = input_data.cuda() if isinstance(
input_data, torch.Tensor) else torch.tensor(input_data).cuda()
indices = indices.cuda() if isinstance(
indices, torch.Tensor) else torch.tensor(indices).int().cuda()
updates = updates.cuda() if isinstance(
updates, torch.Tensor) else torch.tensor(updates).cuda()
input_data = input_data.to(torch_dtype)
updates = updates.to(torch_dtype)
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
input_t = Tensor(name='input',
shape=input_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
indices_t = Tensor(name='indices',
shape=indices.shape,
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
updates_t = Tensor(name='updates',
shape=updates.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.scatter(input_t,
dim=dim,
indices=indices_t,
updates=updates_t)
output.mark_output('output')
# trt run
session = create_session(builder, network, precision=dtype)
inputs = {'input': input_data, 'indices': indices, 'updates': updates}
outputs = run_session(session, inputs)
# pytorch run
ref = torch.scatter(input_data,
dim=dim,
index=indices.to(dtype=torch.int64),
src=updates)
# compare diff
torch.testing.assert_close(ref, outputs['output'])