TensorRT-LLMs/tests/functional/test_scatter_nd.py
Kaiyu Xie 9dbc5b38ba
Update TensorRT-LLM (#1891)
* Update TensorRT-LLM

---------

Co-authored-by: Marks101 <markus.schnoes@gmx.de>
Co-authored-by: lkm2835 <lkm2835@gmail.com>
2024-07-04 14:37:19 +08:00

86 lines
3.1 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
from itertools import product
import torch
from parameterized import parameterized
import tensorrt_llm
from tensorrt_llm import Tensor
from tensorrt_llm._utils import str_dtype_to_torch
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import create_session, run_session
class TestScatter(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
def scatter_nd_ref(self, input_data, indices, updates):
input_data[tuple(indices.t())] = updates.view(-1)
return input_data
@parameterized.expand(
list(
product([
([[-3.0, -2.0, -1.0, 10.0, -25.0]
], [[0.0, 1.0, 2.0, -2.0, -1.0]]),
], [([0, 0, 1], [1, 0, 3])], [([-1.0, 0])],
['float16', 'float32', 'int32'])))
def test_scatter(self, input_data, indices, updates, dtype):
torch_dtype = str_dtype_to_torch(dtype)
input_data = torch.tensor(input_data).cuda()
indices = torch.tensor(indices).int().cuda()
updates = torch.tensor(updates).cuda()
input_data = input_data.to(torch_dtype)
updates = updates.to(torch_dtype)
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
input_t = Tensor(name='input',
shape=input_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
indices_t = Tensor(name='indices',
shape=indices.shape,
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
updates_t = Tensor(name='updates',
shape=updates.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.scatter_nd(input_t, indices_t,
updates_t)
output.mark_output('output')
# trt run
session = create_session(builder, network, precision=dtype)
inputs = {'input': input_data, 'indices': indices, 'updates': updates}
outputs = run_session(session, inputs)
# pytorch run
ref = self.scatter_nd_ref(input_data, indices, updates)
# compare diff
torch.testing.assert_close(ref, outputs['output'])