mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: akhoroshev <arthoroshev@gmail.com> Co-authored-by: Fabian Joswig <fjosw@users.noreply.github.com> Co-authored-by: Tayef Shah <tayefshah@gmail.com> Co-authored-by: lfz941 <linfanzai941@gmail.com>
609 lines
27 KiB
Python
609 lines
27 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
import unittest
|
|
from itertools import product
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
from einops import rearrange, repeat
|
|
from parameterized import parameterized
|
|
from torch_ref import (selective_scan_ref, selective_state_update_ref,
|
|
ssd_chunk_scan_combined_ref)
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Tensor
|
|
from tensorrt_llm._utils import str_dtype_to_torch
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from utils.util import getSMVersion, skip_bf16_pre_ampere, unittest_name_func
|
|
|
|
|
|
class TestFunctional(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level('error')
|
|
|
|
@parameterized.expand(list(
|
|
product([2048], [16], ['context', 'generation'],
|
|
['float16', 'float32', 'bfloat16'], [3], [16], [False, True])),
|
|
name_func=unittest_name_func)
|
|
def test_selective_scan(self, dim, dstate, req_type, dtype, batch_size,
|
|
max_seq_len, remove_padding):
|
|
|
|
# Skip tests that are not supported in pre-ampere architecture
|
|
skip_bf16_pre_ampere(dtype)
|
|
|
|
# configs
|
|
device = "cuda"
|
|
seq_len = max_seq_len if req_type == 'context' else 1
|
|
dt_rank = 160
|
|
delta_softplus = True
|
|
|
|
# test data
|
|
torch.random.manual_seed(0)
|
|
if remove_padding:
|
|
last_token_ids = torch.randint(1,
|
|
seq_len + 1, (batch_size, ),
|
|
dtype=torch.int32)
|
|
host_context_lengths = last_token_ids.detach().clone().cpu()
|
|
last_token_ids = torch.cumsum(last_token_ids,
|
|
dim=0,
|
|
dtype=torch.int32).to(device)
|
|
total_num_tokens = last_token_ids[batch_size - 1]
|
|
else:
|
|
last_token_ids = torch.ones(
|
|
(batch_size, ), dtype=torch.int32, device=device) * seq_len
|
|
host_context_lengths = last_token_ids.detach().clone().cpu()
|
|
total_num_tokens = batch_size * seq_len
|
|
state = torch.randn(batch_size,
|
|
dstate,
|
|
dim,
|
|
device=device,
|
|
dtype=str_dtype_to_torch(dtype))
|
|
x = torch.randn(total_num_tokens,
|
|
dim,
|
|
device=device,
|
|
dtype=str_dtype_to_torch(dtype))
|
|
dt = torch.randn(total_num_tokens,
|
|
dim,
|
|
device=device,
|
|
dtype=str_dtype_to_torch(dtype))
|
|
dt_bias = torch.rand(dim, device=device) - 4.0
|
|
A = -torch.rand(dstate, dim, device=device) - 1.0
|
|
BC = torch.randn(total_num_tokens,
|
|
dt_rank + dstate * 2,
|
|
device=device,
|
|
dtype=str_dtype_to_torch(dtype))
|
|
D = torch.randn(dim, device=device)
|
|
z = torch.randn_like(x)
|
|
host_request_types = torch.tensor([0 if req_type == 'context' else 1] *
|
|
batch_size,
|
|
dtype=torch.int32)
|
|
if not remove_padding or req_type == 'generation':
|
|
x = x.view(-1, seq_len, dim)
|
|
dt = dt.view(-1, seq_len, dim)
|
|
BC = BC.view(-1, seq_len, dt_rank + dstate * 2)
|
|
z = z.view(-1, seq_len, dim)
|
|
output = torch.zeros(x.shape,
|
|
device=device,
|
|
dtype=str_dtype_to_torch(dtype))
|
|
|
|
state_ref = state.detach().clone()
|
|
x_ref = x.detach().clone()
|
|
dt_ref = dt.detach().clone()
|
|
dt_bias_ref = dt_bias.detach().clone()
|
|
A_ref = A.detach().clone()
|
|
B_ref = BC[..., dt_rank:dt_rank + dstate].detach().clone()
|
|
C_ref = BC[..., dt_rank + dstate:].detach().clone()
|
|
D_ref = D.detach().clone()
|
|
z_ref = z.detach().clone()
|
|
|
|
# construct trt network
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
if remove_padding:
|
|
net.plugin_config.remove_input_padding = True
|
|
else:
|
|
net.plugin_config.remove_input_padding = False
|
|
net.plugin_config.paged_state = False
|
|
with tensorrt_llm.net_guard(net):
|
|
x_tensor = Tensor(name='input',
|
|
shape=x.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
state_tensor = Tensor(name='state',
|
|
shape=state.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
dt_tensor = Tensor(name='delta',
|
|
shape=dt.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
dt_bias_tensor = Tensor(
|
|
name='delta_bias',
|
|
shape=dt_bias.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt('float32'))
|
|
A_tensor = Tensor(name='A',
|
|
shape=A.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt('float32'))
|
|
BC_tensor = Tensor(name='BC',
|
|
shape=BC.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
D_tensor = Tensor(name='D',
|
|
shape=D.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt('float32'))
|
|
z_tensor = Tensor(name='z',
|
|
shape=z.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
host_request_types_tensor = Tensor(
|
|
name='host_request_types',
|
|
shape=host_request_types.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
|
|
last_token_ids_tensor = Tensor(
|
|
name='last_token_ids',
|
|
shape=last_token_ids.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
|
|
host_context_lengths_tensor = None
|
|
if remove_padding:
|
|
host_context_lengths_tensor = Tensor(
|
|
name='host_context_lengths',
|
|
shape=host_context_lengths.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
|
|
outputs = tensorrt_llm.functional.selective_scan(
|
|
x_tensor,
|
|
state_tensor,
|
|
dt_tensor,
|
|
dt_bias_tensor,
|
|
A_tensor,
|
|
BC_tensor,
|
|
D_tensor,
|
|
host_request_types_tensor,
|
|
last_token_ids_tensor,
|
|
dim,
|
|
dstate,
|
|
dt_rank,
|
|
delta_softplus,
|
|
dtype,
|
|
host_context_lengths=host_context_lengths_tensor,
|
|
z=z_tensor)
|
|
net._mark_output(outputs[0],
|
|
'output',
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
net._mark_output(outputs[1],
|
|
'present_state',
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
|
|
# trt run
|
|
inputs = {
|
|
'input': x,
|
|
'state': state,
|
|
'delta': dt,
|
|
'delta_bias': dt_bias,
|
|
'A': A,
|
|
'BC': BC,
|
|
'D': D,
|
|
'z': z,
|
|
'host_request_types': host_request_types,
|
|
'last_token_ids': last_token_ids
|
|
}
|
|
if remove_padding:
|
|
inputs['host_context_lengths'] = host_context_lengths
|
|
outputs = {'output': output, 'present_state': state}
|
|
stream = torch.cuda.current_stream()
|
|
builder_config = builder.create_builder_config(precision=dtype, )
|
|
engine = builder.build_engine(net, builder_config)
|
|
session = tensorrt_llm.runtime.Session.from_serialized_engine(engine)
|
|
session.run(inputs=inputs, outputs=outputs, stream=stream.cuda_stream)
|
|
out_ref = torch.zeros(output.shape,
|
|
device=device,
|
|
dtype=str_dtype_to_torch(dtype))
|
|
if req_type == 'context':
|
|
# pytorch run
|
|
if remove_padding:
|
|
for i in range(batch_size):
|
|
start_id = 0 if i == 0 else last_token_ids[i - 1]
|
|
end_id = last_token_ids[i]
|
|
part_out_ref, part_state_ref = selective_scan_ref(
|
|
x_ref[start_id:end_id].unsqueeze(0),
|
|
dt_ref[start_id:end_id].unsqueeze(0),
|
|
A_ref,
|
|
B_ref[start_id:end_id].unsqueeze(0),
|
|
C_ref[start_id:end_id].unsqueeze(0),
|
|
D=D_ref,
|
|
z=z_ref[start_id:end_id].unsqueeze(0),
|
|
delta_bias=dt_bias_ref,
|
|
delta_softplus=True)
|
|
out_ref[start_id:end_id][:] = part_out_ref.squeeze(0)
|
|
state_ref[i][:][:] = part_state_ref.squeeze(0)
|
|
else:
|
|
out_ref, state_ref = selective_scan_ref(x_ref,
|
|
dt_ref,
|
|
A_ref,
|
|
B_ref,
|
|
C_ref,
|
|
D=D_ref,
|
|
z=z_ref,
|
|
delta_bias=dt_bias_ref,
|
|
delta_softplus=True)
|
|
elif req_type == 'generation':
|
|
# pytorch run
|
|
|
|
out_ref = selective_state_update_ref(state_ref,
|
|
x_ref.squeeze(1),
|
|
dt_ref.squeeze(1),
|
|
A_ref,
|
|
B_ref.squeeze(1),
|
|
C_ref.squeeze(1),
|
|
D=D_ref,
|
|
z=z_ref.squeeze(1),
|
|
dt_bias=dt_bias_ref,
|
|
dt_softplus=True)
|
|
out_ref = out_ref.unsqueeze(1)
|
|
|
|
dtype_atol = {"float16": 5e-3, "float32": 2e-3, "bfloat16": 5e-2}
|
|
|
|
output_cpu = outputs['output'].to(torch.float32).cpu()
|
|
present_state_cpu = outputs['present_state'].to(torch.float32).cpu()
|
|
np.testing.assert_allclose(out_ref.to(torch.float32).cpu().numpy(),
|
|
output_cpu.numpy(),
|
|
atol=dtype_atol[dtype])
|
|
np.testing.assert_allclose(state_ref.to(torch.float32).cpu().numpy(),
|
|
present_state_cpu.numpy(),
|
|
atol=dtype_atol[dtype])
|
|
|
|
@parameterized.expand(
|
|
list(
|
|
product([2048], [64], [1, 4], ['context', 'generation'],
|
|
['float32', 'float16', 'bfloat16'], [3], [16],
|
|
[True, False], [True, False])) +
|
|
# long sequence tests to cover the int overflow issue
|
|
list(
|
|
product([5120], [64], [1], ['context'], ['float16'], [2], [131072],
|
|
[True, False], [True, False])),
|
|
name_func=unittest_name_func)
|
|
def test_selective_scan_v2(self, dim, headdim, ngroups, req_type, dtype,
|
|
batch_size, max_seq_len, has_z, remove_padding):
|
|
|
|
# Skip tests that are not supported
|
|
skip_bf16_pre_ampere(dtype)
|
|
if dtype == 'float32' and req_type == 'context':
|
|
pytest.skip(
|
|
"Mamba2 chunk scan kernel only support float16 and bfloat16")
|
|
if getSMVersion() < 80:
|
|
pytest.skip("Mamba2 is not supported in pre-Ampere architecture")
|
|
if max_seq_len >= 128 * 1024:
|
|
total_gpu_mem = torch.cuda.get_device_properties(0).total_memory
|
|
if total_gpu_mem <= 68 * 1024**3:
|
|
pytest.skip(
|
|
"The long sequence test needs at least 68GB memory, skipping"
|
|
)
|
|
|
|
# configs
|
|
device = "cuda"
|
|
seq_len = max_seq_len if req_type == 'context' else 1
|
|
long_context = max_seq_len >= 128 * 1024
|
|
dstate = 128
|
|
chunk_size = 256
|
|
nheads = dim // headdim
|
|
delta_softplus = True
|
|
mean = 0.0
|
|
if long_context:
|
|
std_dev = 0.05
|
|
elif dtype == "float32":
|
|
std_dev = 0.5
|
|
else:
|
|
std_dev = 0.1
|
|
|
|
# test data
|
|
torch.random.manual_seed(0)
|
|
if remove_padding:
|
|
last_token_ids = torch.randint(1,
|
|
seq_len + 1, (batch_size, ),
|
|
dtype=torch.int32)
|
|
last_token_ids[0] = seq_len
|
|
host_context_lengths = last_token_ids.detach().clone().cpu()
|
|
last_token_ids = torch.cumsum(last_token_ids,
|
|
dim=0,
|
|
dtype=torch.int32).to(device)
|
|
total_num_tokens = last_token_ids[batch_size - 1]
|
|
else:
|
|
last_token_ids = torch.ones(
|
|
(batch_size, ), dtype=torch.int32, device=device) * seq_len
|
|
host_context_lengths = last_token_ids.detach().clone().cpu()
|
|
total_num_tokens = batch_size * seq_len
|
|
state = torch.empty(batch_size,
|
|
nheads,
|
|
dstate,
|
|
headdim,
|
|
device=device,
|
|
dtype=str_dtype_to_torch(dtype))
|
|
x = torch.empty(total_num_tokens,
|
|
dim,
|
|
device=device,
|
|
dtype=str_dtype_to_torch(dtype))
|
|
x.normal_(mean, std_dev)
|
|
state.normal_(mean, std_dev)
|
|
dt = torch.randn(total_num_tokens,
|
|
nheads,
|
|
device=device,
|
|
dtype=str_dtype_to_torch(dtype))
|
|
dt_bias = torch.rand(nheads, device=device) - 4.0
|
|
A = -torch.rand(nheads, device=device) - 1.0
|
|
BC = torch.randn(total_num_tokens,
|
|
ngroups * dstate * 2,
|
|
device=device,
|
|
dtype=str_dtype_to_torch(dtype))
|
|
D = torch.randn(nheads, device=device)
|
|
if has_z:
|
|
z = torch.randn_like(x)
|
|
host_request_types = torch.tensor([0 if req_type == 'context' else 1] *
|
|
batch_size,
|
|
dtype=torch.int32)
|
|
if not remove_padding or req_type == 'generation':
|
|
x = x.view(-1, seq_len, dim)
|
|
dt = dt.view(-1, seq_len, nheads)
|
|
BC = BC.view(-1, seq_len, ngroups * dstate * 2)
|
|
if has_z:
|
|
z = z.view(-1, seq_len, dim)
|
|
xBC = torch.concat([x, BC], dim=-1).contiguous()
|
|
if has_z:
|
|
zxBCdt = torch.concat([z, torch.randn_like(xBC), dt],
|
|
dim=-1).contiguous()
|
|
else:
|
|
zxBCdt = torch.concat([torch.randn_like(xBC), dt],
|
|
dim=-1).contiguous()
|
|
output = torch.zeros(x.shape,
|
|
device=device,
|
|
dtype=str_dtype_to_torch(dtype))
|
|
|
|
state_ref = state.detach().clone()
|
|
x_ref = x.detach().clone()
|
|
dt_ref = dt.detach().clone()
|
|
dt_bias_ref = dt_bias.detach().clone()
|
|
A_ref = A.detach().clone()
|
|
B_ref = BC[..., 0:ngroups * dstate].detach().clone()
|
|
C_ref = BC[..., ngroups * dstate:].detach().clone()
|
|
D_ref = D.detach().clone()
|
|
z_ref = z.detach().clone() if has_z else None
|
|
|
|
# construct trt network
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
if remove_padding:
|
|
net.plugin_config.remove_input_padding = True
|
|
else:
|
|
net.plugin_config.remove_input_padding = False
|
|
net.plugin_config.paged_state = False
|
|
with tensorrt_llm.net_guard(net):
|
|
x_tensor = Tensor(name='input',
|
|
shape=xBC.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
state_tensor = Tensor(name='state',
|
|
shape=state.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
dt_tensor = Tensor(name='delta',
|
|
shape=zxBCdt.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
dt_bias_tensor = Tensor(
|
|
name='delta_bias',
|
|
shape=dt_bias.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt('float32'))
|
|
A_tensor = Tensor(name='A',
|
|
shape=A.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt('float32'))
|
|
BC_tensor = Tensor(name='BC',
|
|
shape=xBC.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
D_tensor = Tensor(name='D',
|
|
shape=D.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt('float32'))
|
|
if has_z:
|
|
z_tensor = Tensor(name='z',
|
|
shape=zxBCdt.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
host_request_types_tensor = Tensor(
|
|
name='host_request_types',
|
|
shape=host_request_types.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
|
|
last_token_ids_tensor = Tensor(
|
|
name='last_token_ids',
|
|
shape=last_token_ids.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
|
|
host_context_lengths_tensor = None
|
|
if remove_padding:
|
|
host_context_lengths_tensor = Tensor(
|
|
name='host_context_lengths',
|
|
shape=host_context_lengths.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
|
|
outputs = tensorrt_llm.functional.selective_scan(
|
|
x_tensor,
|
|
state_tensor,
|
|
dt_tensor,
|
|
dt_bias_tensor,
|
|
A_tensor,
|
|
BC_tensor,
|
|
D_tensor,
|
|
host_request_types_tensor,
|
|
last_token_ids_tensor,
|
|
dim,
|
|
dstate,
|
|
0,
|
|
delta_softplus,
|
|
dtype,
|
|
z=z_tensor if has_z else None,
|
|
host_context_lengths=host_context_lengths_tensor,
|
|
nheads=nheads,
|
|
ngroups=ngroups,
|
|
chunk_size=chunk_size,
|
|
mamba_version='Mamba2')
|
|
net._mark_output(outputs[0],
|
|
'output',
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
net._mark_output(outputs[1],
|
|
'present_state',
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
|
|
# trt run
|
|
inputs = {
|
|
'input': xBC,
|
|
'state': state,
|
|
'delta': zxBCdt,
|
|
'delta_bias': dt_bias,
|
|
'A': A,
|
|
'BC': xBC,
|
|
'D': D,
|
|
'host_request_types': host_request_types,
|
|
'last_token_ids': last_token_ids
|
|
}
|
|
if remove_padding:
|
|
inputs['host_context_lengths'] = host_context_lengths
|
|
if has_z:
|
|
inputs['z'] = zxBCdt
|
|
inputs
|
|
outputs = {'output': output, 'present_state': state}
|
|
stream = torch.cuda.current_stream()
|
|
builder_config = builder.create_builder_config(precision=dtype, )
|
|
engine = builder.build_engine(net, builder_config)
|
|
session = tensorrt_llm.runtime.Session.from_serialized_engine(engine)
|
|
session.run(inputs=inputs, outputs=outputs, stream=stream.cuda_stream)
|
|
out_ref = torch.zeros(output.shape,
|
|
device=device,
|
|
dtype=str_dtype_to_torch(dtype))
|
|
# pytorch run
|
|
if req_type == 'context':
|
|
if remove_padding:
|
|
for i in range(batch_size):
|
|
start = 0 if i == 0 else last_token_ids[i - 1]
|
|
end = last_token_ids[i]
|
|
x_reshaped = rearrange(x_ref[start:end].unsqueeze(0),
|
|
"b l (h p) -> b l h p",
|
|
p=headdim)
|
|
B_ref_reshaped = rearrange(B_ref[start:end].unsqueeze(0),
|
|
"b l (g n) -> b l g n",
|
|
g=ngroups)
|
|
C_ref_reshaped = rearrange(C_ref[start:end].unsqueeze(0),
|
|
"b l (g n) -> b l g n",
|
|
g=ngroups)
|
|
z_ref_reshaped = rearrange(z_ref[start:end].unsqueeze(0),
|
|
"b l (h p) -> b l h p",
|
|
p=headdim) if has_z else None
|
|
part_out_ref, part_state_ref = ssd_chunk_scan_combined_ref(
|
|
x_reshaped,
|
|
dt_ref[start:end].unsqueeze(0),
|
|
A_ref,
|
|
B_ref_reshaped,
|
|
C_ref_reshaped,
|
|
chunk_size,
|
|
D=D_ref,
|
|
z=z_ref_reshaped,
|
|
dt_bias=dt_bias_ref,
|
|
dt_softplus=delta_softplus)
|
|
part_out_ref = rearrange(part_out_ref,
|
|
"b l h p -> b l (h p)")
|
|
out_ref[start:end, ] = part_out_ref.squeeze(0)
|
|
state_ref[i, ] = part_state_ref.squeeze(0)
|
|
elif long_context:
|
|
# to save memory
|
|
for i in range(batch_size):
|
|
x_reshaped = rearrange(x_ref[i:i + 1, ],
|
|
"b l (h p) -> b l h p",
|
|
p=headdim)
|
|
B_ref_reshaped = rearrange(B_ref[i:i + 1, ],
|
|
"b l (g n) -> b l g n",
|
|
g=ngroups)
|
|
C_ref_reshaped = rearrange(C_ref[i:i + 1, ],
|
|
"b l (g n) -> b l g n",
|
|
g=ngroups)
|
|
z_ref_reshaped = rearrange(z_ref[i:i + 1, ],
|
|
"b l (h p) -> b l h p",
|
|
p=headdim) if has_z else None
|
|
part_out_ref, part_state_ref = ssd_chunk_scan_combined_ref(
|
|
x_reshaped,
|
|
dt_ref[i:i + 1, ],
|
|
A_ref,
|
|
B_ref_reshaped,
|
|
C_ref_reshaped,
|
|
chunk_size,
|
|
D=D_ref,
|
|
z=z_ref_reshaped,
|
|
dt_bias=dt_bias_ref,
|
|
dt_softplus=delta_softplus)
|
|
part_out_ref = rearrange(part_out_ref,
|
|
"b l h p -> b l (h p)")
|
|
out_ref[i, ] = part_out_ref.squeeze(0)
|
|
state_ref[i, ] = part_state_ref.squeeze(0)
|
|
else:
|
|
x_reshaped = rearrange(x_ref, "b l (h p) -> b l h p", p=headdim)
|
|
B_ref_reshaped = rearrange(B_ref,
|
|
"b l (g n) -> b l g n",
|
|
g=ngroups)
|
|
C_ref_reshaped = rearrange(C_ref,
|
|
"b l (g n) -> b l g n",
|
|
g=ngroups)
|
|
z_ref_reshaped = rearrange(
|
|
z_ref, "b l (h p) -> b l h p", p=headdim) if has_z else None
|
|
out_ref, state_ref = ssd_chunk_scan_combined_ref(
|
|
x_reshaped,
|
|
dt_ref,
|
|
A_ref,
|
|
B_ref_reshaped,
|
|
C_ref_reshaped,
|
|
chunk_size,
|
|
D=D_ref,
|
|
z=z_ref_reshaped,
|
|
dt_bias=dt_bias_ref,
|
|
dt_softplus=delta_softplus)
|
|
out_ref = rearrange(out_ref, "b l h p -> b l (h p)")
|
|
elif req_type == 'generation':
|
|
A_ref = repeat(A_ref, "h -> h n p", p=headdim,
|
|
n=dstate).to(dtype=torch.float32)
|
|
dt_ref = repeat(dt_ref.squeeze(1), "b h -> b h p", p=headdim)
|
|
dt_bias_ref = repeat(dt_bias_ref, "h -> h p", p=headdim)
|
|
D_ref = repeat(D_ref, "h -> h p", p=headdim)
|
|
B_ref = rearrange(B_ref.squeeze(1), "b (g n) -> b g n", g=ngroups)
|
|
C_ref = rearrange(C_ref.squeeze(1), "b (g n) -> b g n", g=ngroups)
|
|
x_reshaped = rearrange(x_ref.squeeze(1),
|
|
"b (h p) -> b h p",
|
|
p=headdim)
|
|
if has_z:
|
|
z_ref = rearrange(z_ref.squeeze(1),
|
|
"b (h p) -> b h p",
|
|
p=headdim)
|
|
out_ref = selective_state_update_ref(state_ref,
|
|
x_reshaped,
|
|
dt_ref,
|
|
A_ref,
|
|
B_ref,
|
|
C_ref,
|
|
D=D_ref,
|
|
z=z_ref,
|
|
dt_bias=dt_bias_ref,
|
|
dt_softplus=delta_softplus)
|
|
out_ref = rearrange(out_ref, "b h p -> b (h p)").unsqueeze(1)
|
|
|
|
if long_context:
|
|
dtype_atol = {"float16": 2e-2, "bfloat16": 1e-1}
|
|
else:
|
|
dtype_atol = {"float16": 5e-3, "float32": 2e-3, "bfloat16": 5e-2}
|
|
|
|
output_cpu = outputs['output'].to(torch.float32).cpu()
|
|
present_state_cpu = outputs['present_state'].to(torch.float32).cpu()
|
|
np.testing.assert_allclose(out_ref.to(torch.float32).cpu().numpy(),
|
|
output_cpu.numpy(),
|
|
atol=dtype_atol[dtype])
|
|
np.testing.assert_allclose(state_ref.to(torch.float32).cpu().numpy(),
|
|
present_state_cpu.numpy(),
|
|
atol=dtype_atol[dtype])
|