TensorRT-LLMs/tests/functional/test_squeeze.py
Kaiyu Xie 2d234357c6
Update TensorRT-LLM (#1954)
* Update TensorRT-LLM

---------

Co-authored-by: Altair-Alpha <62340011+Altair-Alpha@users.noreply.github.com>
2024-07-16 15:30:25 +08:00

74 lines
2.3 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
import torch
from parameterized import parameterized
import tensorrt_llm
from tensorrt_llm import Tensor
from tensorrt_llm._utils import str_dtype_to_torch
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import create_session, run_session
class TestSqueeze(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
@parameterized.expand([
(
[[[-3.0, -2.0, -1.0, 10.0, -25.0]], [[0.0, 1.0, 2.0, -2.0, -1.0]]],
1,
),
(
[1.0],
0,
),
])
def test_squeeze(self, input_data, dim):
dtype = 'float32'
input_data = torch.tensor(input_data).cuda()
torch_dtype = str_dtype_to_torch(dtype)
input_data = input_data.to(torch_dtype)
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
input_t = Tensor(name='input',
shape=input_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.squeeze(input_t, dim=dim)
output.mark_output('output')
# trt run
session = create_session(builder, network, precision=dtype)
inputs = {
'input': input_data,
}
outputs = run_session(session, inputs)
# pytorch run
ref = torch.squeeze(input_data, dim=dim)
# compare diff
torch.testing.assert_close(ref, outputs['output'])