mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: IbrahimAmin <ibrahimamin532@gmail.com> Co-authored-by: Fabian Joswig <fjosw@users.noreply.github.com> Co-authored-by: Pzzzzz <hello-cd.plus@hotmail.com> Co-authored-by: CoderHam <hemant@cohere.com> Co-authored-by: Konstantin Lopuhin <kostia.lopuhin@gmail.com>
106 lines
3.6 KiB
Python
106 lines
3.6 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
# isort: off
|
|
import torch
|
|
# isort: on
|
|
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Tensor
|
|
|
|
|
|
class TestFunctional(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level('error')
|
|
|
|
def test_unbind_1(self):
|
|
# test data
|
|
dtype = 'float32'
|
|
input_shape = (1, 2, 3)
|
|
unbind_dim = 0
|
|
input_data = torch.rand(
|
|
input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
|
|
|
|
# construct trt network
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
input = Tensor(name='input',
|
|
shape=input_shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
outputs = input.unbind(unbind_dim)
|
|
for i in range(len(outputs)):
|
|
outputs[i].name = f'output_{i}'
|
|
network.mark_output(outputs[i].trt_tensor)
|
|
|
|
# trt run
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={
|
|
'input': input_data.numpy(),
|
|
})
|
|
|
|
# pytorch run
|
|
refs = input_data.unbind(unbind_dim)
|
|
|
|
# compare diff
|
|
# compare diff
|
|
for idx, ref in enumerate(refs):
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
outputs[f'output_{idx}'])
|
|
|
|
def test_unbind_1(self):
|
|
# test data
|
|
dtype = 'float32'
|
|
input_shape = (1, 2, 3)
|
|
unbind_dim = 1
|
|
input_data = torch.rand(
|
|
input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
|
|
|
|
# construct trt network
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
input = Tensor(name='input',
|
|
shape=input_shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
outputs = input.unbind(unbind_dim)
|
|
for i in range(len(outputs)):
|
|
outputs[i].name = f'output_{i}'
|
|
network.mark_output(outputs[i].trt_tensor)
|
|
|
|
# trt run
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={
|
|
'input': input_data.numpy(),
|
|
})
|
|
|
|
# pytorch run
|
|
refs = input_data.unbind(unbind_dim)
|
|
|
|
# compare diff
|
|
# compare diff
|
|
for idx, ref in enumerate(refs):
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
outputs[f'output_{idx}'])
|