TensorRT-LLMs/cpp/tensorrt_llm/plugins/mambaConv1dPlugin/mambaConv1dPlugin.cpp
2025-03-11 21:13:42 +08:00

405 lines
14 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mambaConv1dPlugin.h"
#include "tensorrt_llm/common/assert.h"
#include <algorithm>
using namespace nvinfer1;
using namespace tensorrt_llm::kernels;
using namespace tensorrt_llm::common;
using tensorrt_llm::plugins::MambaConv1dPluginCreator;
using tensorrt_llm::plugins::MambaConv1dPlugin;
static char const* MAMBA_CONV1D_PLUGIN_VERSION{"1"};
static char const* MAMBA_CONV1D_PLUGIN_NAME{"MambaConv1d"};
PluginFieldCollection MambaConv1dPluginCreator::mFC{};
std::vector<nvinfer1::PluginField> MambaConv1dPluginCreator::mPluginAttributes;
MambaConv1dPlugin::MambaConv1dPlugin(int dim, int dconv, int preStride, int postStride, nvinfer1::DataType type,
bool removePadding, bool pagedState, bool applySilu)
: mDim(dim)
, mDConv(dconv)
, mPreStride(preStride)
, mPostStride(postStride)
, mType(type)
, mRemovePadding(removePadding)
, mPagedState(pagedState)
, mApplySilu(applySilu)
{
TLLM_CHECK_WITH_INFO((mType == DataType::kBF16) || (mType == DataType::kFLOAT) || (mType == DataType::kHALF),
"Only support float, half, and bfloat16.");
}
// Parameterized constructor
MambaConv1dPlugin::MambaConv1dPlugin(void const* data, size_t length)
{
char const *d = reinterpret_cast<char const*>(data), *a = d;
read(d, mDim);
read(d, mDConv);
read(d, mPreStride);
read(d, mPostStride);
read(d, mType);
read(d, mRemovePadding);
read(d, mPagedState);
read(d, mApplySilu);
TLLM_CHECK(d == a + length);
TLLM_CHECK_WITH_INFO((mType == DataType::kBF16) || (mType == DataType::kFLOAT) || (mType == DataType::kHALF),
"Only support float, half, and bfloat16.");
}
// IPluginV2DynamicExt Methods
nvinfer1::IPluginV2DynamicExt* MambaConv1dPlugin::clone() const noexcept
{
auto* plugin
= new MambaConv1dPlugin(mDim, mDConv, mPreStride, mPostStride, mType, mRemovePadding, mPagedState, mApplySilu);
plugin->setPluginNamespace(mNamespace.c_str());
return plugin;
}
// Outputs
// output_tensor: [batch_size, seq_len, dim] or [num_tokens, dim] for remove_input_padding
// state: [batch_size, dconv - 1, dim]
nvinfer1::DimsExprs MambaConv1dPlugin::getOutputDimensions(
int outputIndex, nvinfer1::DimsExprs const* inputs, int nbInputs, nvinfer1::IExprBuilder& exprBuilder) noexcept
{
if (outputIndex == 0)
{
auto ret = inputs[getInputTensorIdx()];
ret.d[mRemovePadding ? 1 : 2] = exprBuilder.constant(mDim);
return ret;
}
return inputs[getConvStateIdx()];
}
bool MambaConv1dPlugin::supportsFormatCombination(
int pos, nvinfer1::PluginTensorDesc const* inOut, int nbInputs, int nbOutputs) noexcept
{
if (pos == getHostRequestTypesIdx() || pos == getLastTokenIdsIdx()
|| (mRemovePadding && pos == getHostContextLengthIdx()) || (mPagedState && pos == getSlotMappingIdx()))
{
return inOut[pos].type == nvinfer1::DataType::kINT32;
}
else if (mPagedState && pos == getConvStateIdx())
{
return inOut[pos].type == nvinfer1::DataType::kINT64;
}
else
{
return (inOut[pos].type == mType) && (inOut[pos].format == TensorFormat::kLINEAR);
}
}
void MambaConv1dPlugin::configurePlugin(nvinfer1::DynamicPluginTensorDesc const* in, int nbInputs,
nvinfer1::DynamicPluginTensorDesc const* out, int nbOutputs) noexcept
{
}
size_t MambaConv1dPlugin::getWorkspaceSize(nvinfer1::PluginTensorDesc const* inputs, int nbInputs,
nvinfer1::PluginTensorDesc const* outputs, int nbOutputs) const noexcept
{
return 0;
}
void MambaConv1dPlugin::setMambaConv1dParams(tensorrt_llm::kernels::MambaConv1dParamsBase& params, const size_t batch,
const size_t dim, const size_t maxSeqLen, const size_t dconv, const size_t preStride, const size_t postStride,
void const* inPtr, void const* stateInPtr, void* stateOutPtr, void const* convWeight, void const* convBias,
void* outPtr, int const* lastTokenIds, int const* stateSlotMapping, bool removePadding, bool applySilu)
{
// Reset the parameters
memset(&params, 0, sizeof(params));
params.batch = batch;
params.dim = dim;
params.max_seqlen = maxSeqLen;
params.dconv = dconv;
params.pre_stride = preStride;
params.post_stride = postStride;
params.remove_padding = removePadding;
params.apply_silu = applySilu;
// Set the pointers and strides.
params.in_ptr = const_cast<void*>(inPtr);
params.state_in_ptr = const_cast<void*>(stateInPtr);
params.state_out_ptr = stateOutPtr;
params.weight_ptr = const_cast<void*>(convWeight);
params.bias_ptr = const_cast<void*>(convBias);
params.out_ptr = outPtr;
params.last_token_ids_ptr = lastTokenIds;
params.state_slot_mapping_ptr = stateSlotMapping;
}
template <typename T>
int MambaConv1dPlugin::enqueueImpl(nvinfer1::PluginTensorDesc const* inputDesc,
nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream)
{
// inputs
// 0. input_tensor [batch_size, seq_len, dim] or [num_tokens, dim] for remove_input_padding
// 1. conv_state [batch_size, dconv - 1, dim] or host [1] containing only pointer for paged_state
// 2. weight [dim, 1, dconv]
// 3. bias [dim]
// 4. host_request_types [batch_size] int32. 0: context; 1: generation; 2: none.
// 5. last_token_ids [batch_size] int32
// 6. host_context_lengths [batch_size] int32, optional for remove_input_padding
// 7. state_slot_mapping [batch_size] int32, optional
// outputs
// 0. output_tensor [batch_size, seq_len, dim] or [num_tokens, dim] for remove_input_padding
// 1. conv_state [batch_size, dconv - 1, dim]
auto const batchSize = inputDesc[getHostRequestTypesIdx()].dims.d[0];
int maxSeqLen;
if (mRemovePadding)
{
int const* host_context_length = static_cast<int const*>(inputs[getHostContextLengthIdx()]);
maxSeqLen = *std::max_element(host_context_length, host_context_length + batchSize);
}
else
{
maxSeqLen = inputDesc[getInputTensorIdx()].dims.d[1];
}
// only support context or generation, not for both of them
RequestType const* reqTypes = static_cast<RequestType const*>(inputs[getHostRequestTypesIdx()]);
MambaConv1dParamsBase mambaConv1dParams;
int const* slotMapping = mPagedState ? static_cast<int const*>(inputs[getSlotMappingIdx()]) : nullptr;
void* stateInPtr = mPagedState ? *reinterpret_cast<void**>(const_cast<void*>(inputs[getConvStateIdx()]))
: const_cast<void*>(inputs[getConvStateIdx()]);
void* stateOutPtr
= mPagedState ? *reinterpret_cast<void**>(const_cast<void*>(inputs[getConvStateIdx()])) : outputs[1];
setMambaConv1dParams(mambaConv1dParams, batchSize, mDim, maxSeqLen, mDConv, mPreStride, mPostStride,
inputs[getInputTensorIdx()], stateInPtr, stateOutPtr, inputs[getWeightIdx()], inputs[getBiasIdx()], outputs[0],
static_cast<int const*>(inputs[getLastTokenIdsIdx()]), slotMapping, mRemovePadding, mApplySilu);
if (reqTypes[0] == RequestType::kCONTEXT)
{
invokeMambaConv1dContext<T>(mambaConv1dParams, stream);
}
else if (reqTypes[0] == RequestType::kGENERATION)
{
invokeMambaConv1dGeneration<T>(mambaConv1dParams, stream);
}
sync_check_cuda_error(stream);
return 0;
}
int MambaConv1dPlugin::enqueue(nvinfer1::PluginTensorDesc const* inputDesc,
nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream) noexcept
{
if (isBuilding())
{
return 0;
}
if (mType == DataType::kHALF)
{
return enqueueImpl<half>(inputDesc, outputDesc, inputs, outputs, workspace, stream);
}
else if (mType == DataType::kFLOAT)
{
return enqueueImpl<float>(inputDesc, outputDesc, inputs, outputs, workspace, stream);
}
#ifdef ENABLE_BF16
else if (mType == DataType::kBF16)
{
return enqueueImpl<__nv_bfloat16>(inputDesc, outputDesc, inputs, outputs, workspace, stream);
}
#endif
return 0;
}
// IPluginV2Ext Methods
nvinfer1::DataType MambaConv1dPlugin::getOutputDataType(
int index, nvinfer1::DataType const* inputTypes, int nbInputs) const noexcept
{
return inputTypes[getInputTensorIdx()];
}
// IPluginV2 Methods
char const* MambaConv1dPlugin::getPluginType() const noexcept
{
return MAMBA_CONV1D_PLUGIN_NAME;
}
char const* MambaConv1dPlugin::getPluginVersion() const noexcept
{
return MAMBA_CONV1D_PLUGIN_VERSION;
}
int MambaConv1dPlugin::getNbOutputs() const noexcept
{
return 2;
}
int MambaConv1dPlugin::initialize() noexcept
{
return 0;
}
void MambaConv1dPlugin::terminate() noexcept {}
size_t MambaConv1dPlugin::getSerializationSize() const noexcept
{
return sizeof(mDim) + sizeof(mDConv) + sizeof(mPreStride) + sizeof(mPostStride) + sizeof(mType)
+ sizeof(mRemovePadding) + sizeof(mPagedState) + sizeof(mApplySilu);
}
void MambaConv1dPlugin::serialize(void* buffer) const noexcept
{
char *d = static_cast<char*>(buffer), *a = d;
write(d, mDim);
write(d, mDConv);
write(d, mPreStride);
write(d, mPostStride);
write(d, mType);
write(d, mRemovePadding);
write(d, mPagedState);
write(d, mApplySilu);
TLLM_CHECK(d == a + getSerializationSize());
}
void MambaConv1dPlugin::destroy() noexcept
{
delete this;
}
///////////////
MambaConv1dPluginCreator::MambaConv1dPluginCreator()
{
// Fill PluginFieldCollection with PluginField arguments metadata
mPluginAttributes.clear();
mPluginAttributes.emplace_back(PluginField("dim", nullptr, PluginFieldType::kINT32));
mPluginAttributes.emplace_back(PluginField("dconv", nullptr, PluginFieldType::kINT32));
mPluginAttributes.emplace_back(PluginField("pre_stride", nullptr, PluginFieldType::kINT32));
mPluginAttributes.emplace_back(PluginField("post_stride", nullptr, PluginFieldType::kINT32));
mPluginAttributes.emplace_back(PluginField("type_id", nullptr, PluginFieldType::kINT32));
mPluginAttributes.emplace_back(PluginField("remove_input_padding", nullptr, PluginFieldType::kINT8));
mPluginAttributes.emplace_back(PluginField("paged_state", nullptr, PluginFieldType::kINT8));
mPluginAttributes.emplace_back(PluginField("apply_silu", nullptr, PluginFieldType::kINT8));
mFC.nbFields = mPluginAttributes.size();
mFC.fields = mPluginAttributes.data();
}
char const* MambaConv1dPluginCreator::getPluginName() const noexcept
{
return MAMBA_CONV1D_PLUGIN_NAME;
}
char const* MambaConv1dPluginCreator::getPluginVersion() const noexcept
{
return MAMBA_CONV1D_PLUGIN_VERSION;
}
PluginFieldCollection const* MambaConv1dPluginCreator::getFieldNames() noexcept
{
return &mFC;
}
IPluginV2* MambaConv1dPluginCreator::createPlugin(char const* name, PluginFieldCollection const* fc) noexcept
{
PluginField const* fields = fc->fields;
int dim{};
int dconv{};
int pre_stride{};
int post_stride{};
bool removePadding{};
bool pagedState{};
bool applySilu{};
nvinfer1::DataType type{};
// Read configurations from each fields
for (int i = 0; i < fc->nbFields; ++i)
{
char const* attrName = fields[i].name;
if (!strcmp(attrName, "dim"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
dim = static_cast<int>(*(static_cast<int const*>(fields[i].data)));
}
else if (!strcmp(attrName, "dconv"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
dconv = static_cast<int>(*(static_cast<int const*>(fields[i].data)));
}
else if (!strcmp(attrName, "pre_stride"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
pre_stride = static_cast<int>(*(static_cast<int const*>(fields[i].data)));
}
else if (!strcmp(attrName, "post_stride"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
post_stride = static_cast<int>(*(static_cast<int const*>(fields[i].data)));
}
else if (!strcmp(attrName, "type_id"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
type = static_cast<nvinfer1::DataType>(*(static_cast<nvinfer1::DataType const*>(fields[i].data)));
}
else if (!strcmp(attrName, "remove_input_padding"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT8);
removePadding = static_cast<bool>(*(static_cast<bool const*>(fields[i].data)));
}
else if (!strcmp(attrName, "paged_state"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT8);
pagedState = static_cast<bool>(*(static_cast<bool const*>(fields[i].data)));
}
else if (!strcmp(attrName, "apply_silu"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT8);
applySilu = static_cast<bool>(*(static_cast<bool const*>(fields[i].data)));
}
}
try
{
auto* obj
= new MambaConv1dPlugin(dim, dconv, pre_stride, post_stride, type, removePadding, pagedState, applySilu);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
catch (std::exception const& e)
{
caughtError(e);
}
return nullptr;
}
IPluginV2* MambaConv1dPluginCreator::deserializePlugin(
char const* name, void const* serialData, size_t serialLength) noexcept
{
// This object will be deleted when the network is destroyed, which will
// call MambaConv1dPlugin::destroy()
try
{
auto* obj = new MambaConv1dPlugin(serialData, serialLength);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
catch (std::exception const& e)
{
caughtError(e);
}
return nullptr;
}