TensorRT-LLMs/cpp/tensorrt_llm/kernels/indexerKCacheScatter.cu
Chang Liu 7081f254cf
[None][perf] Add custom indexer k cache scatter op (#8960)
Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>
2025-11-07 11:24:26 -08:00

153 lines
6.3 KiB
Plaintext

/*
* Copyright (c) 2022-2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "IndexerKCacheScatter.h"
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/common/cudaUtils.h"
namespace tensorrt_llm::kernels
{
namespace
{
/**
* Given a flat element index and tensor shape [d0, d1, d2, d3] with strides [s0, s1, s2, s3],
* find the actual memory offset within the given k cache pool using the strides.
*/
__device__ __forceinline__ int64_t flatIndexToMemoryOffset(
int64_t flat_idx, int32_t d0, int32_t d1, int32_t d2, int32_t d3, int64_t s0, int64_t s1, int64_t s2, int64_t s3)
{
// Unravel from innermost to outermost dimension
int32_t i3 = flat_idx % d3;
flat_idx /= d3;
int32_t i2 = flat_idx % d2;
flat_idx /= d2;
int32_t i1 = flat_idx % d1;
flat_idx /= d1;
int32_t i0 = flat_idx;
// Compute memory offset using strides
return i0 * s0 + i1 * s1 + i2 * s2 + i3 * s3;
}
} // anonymous namespace
/**
* CUDA kernel to scatter both FP8 K values and scales into the indexer k cache pool
*
* @param k_fp8_bytes Quantized FP8 data [num_tokens, 128]
* @param k_scale_bytes Quantized scales (1 per token) [num_tokens, 4]
* @param k_cache Indexer k cache pool with shape [num_blocks, block_size, 1, per_token_size] (can be
* non-contiguous)
* @param slot_mapping_fp8 Flat element index for FP8 data start position [num_tokens]
* @param slot_mapping_scale Flat element index for scale data start position [num_tokens]
* @param num_tokens Number of tokens
* @param head_dim Head dimension (must be 128)
* @param scale_size Scale size in bytes (must be 4)
* @param cache_stride_0 Stride for k_cache dimension 0 (in bytes)
* @param cache_stride_1 Stride for k_cache dimension 1 (in bytes)
* @param cache_stride_2 Stride for k_cache dimension 2 (in bytes)
* @param cache_stride_3 Stride for k_cache dimension 3 (in bytes)
* @param cache_dim_0 Size of k_cache dimension 0
* @param cache_dim_1 Size of k_cache dimension 1
* @param cache_dim_2 Size of k_cache dimension 2
* @param cache_dim_3 Size of k_cache dimension 3
*/
__global__ void indexerKCacheScatterUnifiedKernel(uint8_t const* __restrict__ k_fp8_bytes,
uint8_t const* __restrict__ k_scale_bytes, uint8_t* __restrict__ k_cache,
int64_t const* __restrict__ slot_mapping_fp8, int64_t const* __restrict__ slot_mapping_scale, int32_t num_tokens,
int32_t head_dim, int32_t scale_size, int64_t cache_stride_0, int64_t cache_stride_1, int64_t cache_stride_2,
int64_t cache_stride_3, int32_t cache_dim_0, int32_t cache_dim_1, int32_t cache_dim_2, int32_t cache_dim_3)
{
// For head_dim=128, each thread handles 4 bytes/elements per read/write instruction
constexpr int VEC_SIZE = 4;
// Token index from block.x
int32_t token_idx = blockIdx.x;
if (token_idx >= num_tokens)
{
return;
}
int64_t flat_idx_fp8_base = slot_mapping_fp8[token_idx];
int64_t flat_idx_scale_base = slot_mapping_scale[token_idx];
if (flat_idx_fp8_base < 0 || flat_idx_scale_base < 0)
{
return;
}
int32_t head_dim_idx = threadIdx.x * VEC_SIZE;
int64_t flat_idx = flat_idx_fp8_base + head_dim_idx;
// Convert flat index to memory offset using strides (k cache pool from cpp kv cache manager is non-contiguous)
int64_t dst_offset = flatIndexToMemoryOffset(flat_idx, cache_dim_0, cache_dim_1, cache_dim_2, cache_dim_3,
cache_stride_0, cache_stride_1, cache_stride_2, cache_stride_3);
int64_t src_offset = token_idx * head_dim + head_dim_idx;
// 4 bytes write
*reinterpret_cast<uint32_t*>(&k_cache[dst_offset]) = *reinterpret_cast<uint32_t const*>(&k_fp8_bytes[src_offset]);
// Only thread 0 writes the single 4 bytes scale value
if (threadIdx.x == 0)
{
int64_t dst_offset_scale = flatIndexToMemoryOffset(flat_idx_scale_base, cache_dim_0, cache_dim_1, cache_dim_2,
cache_dim_3, cache_stride_0, cache_stride_1, cache_stride_2, cache_stride_3);
int64_t src_offset_scale = token_idx * scale_size; // scale_size = 4
// 4 bytes write for scale
*reinterpret_cast<uint32_t*>(&k_cache[dst_offset_scale])
= *reinterpret_cast<uint32_t const*>(&k_scale_bytes[src_offset_scale]);
}
}
void invokeIndexerKCacheScatter(uint8_t const* k_fp8_bytes, uint8_t const* k_scale_bytes, uint8_t* k_cache,
int64_t const* slot_mapping_fp8, int64_t const* slot_mapping_scale, int32_t num_tokens, int32_t head_dim,
int32_t scale_size, int32_t cache_dim_0, int32_t cache_dim_1, int32_t cache_dim_2, int32_t cache_dim_3,
int64_t cache_stride_0, int64_t cache_stride_1, int64_t cache_stride_2, int64_t cache_stride_3, cudaStream_t stream)
{
if (num_tokens == 0)
{
return;
}
// Assertions for DeepSeek-V3.2 configuration
constexpr int32_t QUANT_BLOCK_SIZE = 128;
TLLM_CHECK_WITH_INFO(
head_dim == QUANT_BLOCK_SIZE, "head_dim must equal 128 for DeepSeek-V3 indexer cache (got %d)", head_dim);
TLLM_CHECK_WITH_INFO(
scale_size == 4, "scale_size must equal 4 bytes (1 float32 scale per token, got %d)", scale_size);
// For head_dim=128, we use 32 threads to handle 128 bytes per token and extra 4 bytes for scale
constexpr int32_t THREADS_PER_BLOCK = 32;
dim3 block(THREADS_PER_BLOCK);
dim3 grid(num_tokens);
indexerKCacheScatterUnifiedKernel<<<grid, block, 0, stream>>>(k_fp8_bytes, k_scale_bytes, k_cache, slot_mapping_fp8,
slot_mapping_scale, num_tokens, head_dim, scale_size, cache_stride_0, cache_stride_1, cache_stride_2,
cache_stride_3, cache_dim_0, cache_dim_1, cache_dim_2, cache_dim_3);
// Check for kernel launch errors
TLLM_CUDA_CHECK(cudaGetLastError());
}
} // namespace tensorrt_llm::kernels