mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-02-03 01:31:30 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Starrick Liu <73152103+StarrickLiu@users.noreply.github.com>
160 lines
5.5 KiB
Python
160 lines
5.5 KiB
Python
import argparse
|
|
import time
|
|
import traceback
|
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
from pathlib import Path
|
|
|
|
from tensorrt_llm._utils import release_gc
|
|
from tensorrt_llm.mapping import Mapping
|
|
from tensorrt_llm.models import DeciLMForCausalLM
|
|
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--model_dir', type=str, required=True)
|
|
|
|
parser.add_argument('--tp_size',
|
|
type=int,
|
|
default=1,
|
|
help='N-way tensor parallelism size')
|
|
parser.add_argument('--pp_size',
|
|
type=int,
|
|
default=1,
|
|
help='N-way pipeline parallelism size')
|
|
parser.add_argument(
|
|
'--dtype',
|
|
type=str,
|
|
default='auto',
|
|
choices=['auto', 'float16', 'bfloat16', 'float32'],
|
|
help=
|
|
"The data type for the model weights and activations if not quantized. "
|
|
"If 'auto', the data type is automatically inferred from the source model; "
|
|
"however, if the source dtype is float32, it is converted to float16.")
|
|
|
|
parser.add_argument('--load_by_shard',
|
|
action='store_true',
|
|
help='Load a pretrained model shard-by-shard.')
|
|
|
|
parser.add_argument("--load_model_on_cpu", action="store_true")
|
|
parser.add_argument(
|
|
'--use_parallel_embedding',
|
|
action="store_true",
|
|
default=False,
|
|
help=
|
|
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
|
|
)
|
|
parser.add_argument(
|
|
'--embedding_sharding_dim',
|
|
type=int,
|
|
default=0,
|
|
choices=[0, 1],
|
|
help=
|
|
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
|
|
'To shard it along hidden dimension, set embedding_sharding_dim=1'
|
|
'Note: embedding sharing is only enabled when embedding_sharding_dim = 0'
|
|
)
|
|
parser.add_argument('--output_dir',
|
|
type=str,
|
|
default='tllm_checkpoint',
|
|
help='The path to save the TensorRT-LLM checkpoint')
|
|
parser.add_argument(
|
|
'--workers',
|
|
type=int,
|
|
default=1,
|
|
help='The number of workers for converting checkpoint in parallel')
|
|
|
|
parser.add_argument(
|
|
'--save_config_only',
|
|
action="store_true",
|
|
default=False,
|
|
help=
|
|
'Only save the model config w/o read and converting weights, be careful, this is for debug only'
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--trust_remote_code",
|
|
action="store_true",
|
|
help="Pass trust_remote_code=True to HF loading functions as needed")
|
|
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def args_to_build_options(args):
|
|
return {
|
|
'use_parallel_embedding': args.use_parallel_embedding,
|
|
'embedding_sharding_dim': args.embedding_sharding_dim,
|
|
}
|
|
|
|
|
|
def convert_and_save_hf(args):
|
|
model_dir = args.model_dir
|
|
load_by_shard = args.load_by_shard
|
|
world_size = args.tp_size * args.pp_size
|
|
# Need to convert the cli args to the kay-value pairs and override them in the generate config dict.
|
|
# Ideally these fields will be moved out of the config and pass them into build API, keep them here for compatibility purpose for now,
|
|
# before the refactor is done.
|
|
override_fields = {}
|
|
override_fields.update(args_to_build_options(args))
|
|
|
|
def convert_and_save_rank(args, rank):
|
|
mapping = Mapping(world_size=world_size,
|
|
rank=rank,
|
|
tp_size=args.tp_size,
|
|
pp_size=args.pp_size)
|
|
model = DeciLMForCausalLM.from_hugging_face(
|
|
model_dir,
|
|
args.dtype,
|
|
mapping=mapping,
|
|
load_by_shard=load_by_shard,
|
|
load_model_on_cpu=args.load_model_on_cpu,
|
|
trust_remote_code=args.trust_remote_code,
|
|
**override_fields,
|
|
)
|
|
model.save_checkpoint(args.output_dir, save_config=(rank == 0))
|
|
del model
|
|
|
|
execute(args.workers, [convert_and_save_rank] * world_size, args)
|
|
release_gc()
|
|
|
|
|
|
def execute(workers, func, args):
|
|
if workers == 1:
|
|
for rank, f in enumerate(func):
|
|
f(args, rank)
|
|
else:
|
|
with ThreadPoolExecutor(max_workers=workers) as p:
|
|
futures = [p.submit(f, args, rank) for rank, f in enumerate(func)]
|
|
exceptions = []
|
|
for future in as_completed(futures):
|
|
try:
|
|
future.result()
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
exceptions.append(e)
|
|
assert len(
|
|
exceptions
|
|
) == 0, "Checkpoint conversion failed, please check error log."
|
|
|
|
|
|
def main():
|
|
args = parse_arguments()
|
|
tik = time.time()
|
|
|
|
output_dir = Path(args.output_dir)
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
# TODO(oargov): all deci checkpoints require trust_remote_code=True at the moment, remove this when this changes
|
|
# NOTE: we opt not to make this the default since users should be made aware of this in-case they don't want to trust remote code
|
|
assert args.trust_remote_code, "Nemotron NAS checkpoint require --trust_remote_code"
|
|
|
|
convert_and_save_hf(args)
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
print(f'Total time of converting checkpoints: {t}')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|