TensorRT-LLMs/examples/nemotron_nas/convert_checkpoint.py
Kaiyu Xie aaacc9bd68
Update TensorRT-LLM (#2562)
* Update TensorRT-LLM

---------

Co-authored-by: Starrick Liu <73152103+StarrickLiu@users.noreply.github.com>
2024-12-11 00:31:05 -08:00

160 lines
5.5 KiB
Python

import argparse
import time
import traceback
from concurrent.futures import ThreadPoolExecutor, as_completed
from pathlib import Path
from tensorrt_llm._utils import release_gc
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import DeciLMForCausalLM
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, required=True)
parser.add_argument('--tp_size',
type=int,
default=1,
help='N-way tensor parallelism size')
parser.add_argument('--pp_size',
type=int,
default=1,
help='N-way pipeline parallelism size')
parser.add_argument(
'--dtype',
type=str,
default='auto',
choices=['auto', 'float16', 'bfloat16', 'float32'],
help=
"The data type for the model weights and activations if not quantized. "
"If 'auto', the data type is automatically inferred from the source model; "
"however, if the source dtype is float32, it is converted to float16.")
parser.add_argument('--load_by_shard',
action='store_true',
help='Load a pretrained model shard-by-shard.')
parser.add_argument("--load_model_on_cpu", action="store_true")
parser.add_argument(
'--use_parallel_embedding',
action="store_true",
default=False,
help=
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
)
parser.add_argument(
'--embedding_sharding_dim',
type=int,
default=0,
choices=[0, 1],
help=
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
'To shard it along hidden dimension, set embedding_sharding_dim=1'
'Note: embedding sharing is only enabled when embedding_sharding_dim = 0'
)
parser.add_argument('--output_dir',
type=str,
default='tllm_checkpoint',
help='The path to save the TensorRT-LLM checkpoint')
parser.add_argument(
'--workers',
type=int,
default=1,
help='The number of workers for converting checkpoint in parallel')
parser.add_argument(
'--save_config_only',
action="store_true",
default=False,
help=
'Only save the model config w/o read and converting weights, be careful, this is for debug only'
)
parser.add_argument(
"--trust_remote_code",
action="store_true",
help="Pass trust_remote_code=True to HF loading functions as needed")
args = parser.parse_args()
return args
def args_to_build_options(args):
return {
'use_parallel_embedding': args.use_parallel_embedding,
'embedding_sharding_dim': args.embedding_sharding_dim,
}
def convert_and_save_hf(args):
model_dir = args.model_dir
load_by_shard = args.load_by_shard
world_size = args.tp_size * args.pp_size
# Need to convert the cli args to the kay-value pairs and override them in the generate config dict.
# Ideally these fields will be moved out of the config and pass them into build API, keep them here for compatibility purpose for now,
# before the refactor is done.
override_fields = {}
override_fields.update(args_to_build_options(args))
def convert_and_save_rank(args, rank):
mapping = Mapping(world_size=world_size,
rank=rank,
tp_size=args.tp_size,
pp_size=args.pp_size)
model = DeciLMForCausalLM.from_hugging_face(
model_dir,
args.dtype,
mapping=mapping,
load_by_shard=load_by_shard,
load_model_on_cpu=args.load_model_on_cpu,
trust_remote_code=args.trust_remote_code,
**override_fields,
)
model.save_checkpoint(args.output_dir, save_config=(rank == 0))
del model
execute(args.workers, [convert_and_save_rank] * world_size, args)
release_gc()
def execute(workers, func, args):
if workers == 1:
for rank, f in enumerate(func):
f(args, rank)
else:
with ThreadPoolExecutor(max_workers=workers) as p:
futures = [p.submit(f, args, rank) for rank, f in enumerate(func)]
exceptions = []
for future in as_completed(futures):
try:
future.result()
except Exception as e:
traceback.print_exc()
exceptions.append(e)
assert len(
exceptions
) == 0, "Checkpoint conversion failed, please check error log."
def main():
args = parse_arguments()
tik = time.time()
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
# TODO(oargov): all deci checkpoints require trust_remote_code=True at the moment, remove this when this changes
# NOTE: we opt not to make this the default since users should be made aware of this in-case they don't want to trust remote code
assert args.trust_remote_code, "Nemotron NAS checkpoint require --trust_remote_code"
convert_and_save_hf(args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Total time of converting checkpoints: {t}')
if __name__ == '__main__':
main()