TensorRT-LLMs/cpp/tensorrt_llm/batch_manager/mlaCacheFormatter.h
Zheng Duan ded694b1aa
feat: cache reuse support (selective cache transfer) in mla cache formatter (#4749)
Signed-off-by: Zheng Duan <200704041+zhengd-nv@users.noreply.github.com>
2025-06-04 09:56:31 +08:00

85 lines
3.4 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "dataTransceiver.h"
#include "tensorrt_llm/batch_manager/cacheTransBuffer.h"
#include "tensorrt_llm/batch_manager/kvCacheManager.h"
#include "tensorrt_llm/batch_manager/kvCacheUtils.h"
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/executor/cache_transmission/cacheConcatenate.h"
#include "tensorrt_llm/executor/dataTransceiverState.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include <NvInferRuntimeBase.h>
#include <condition_variable>
#include <cstddef>
#include <cstdint>
#include <iterator>
namespace tensorrt_llm::batch_manager::kv_cache_manager
{
// Simple cache block copy. Because it does not involve data splitting or merging, it performs best when the
// parallel topology is completely identical, making it the preferred method.
class MLACacheFormatter final : public IOFormatter
{
public:
using CacheState = executor::kv_cache::CacheState;
MLACacheFormatter(BaseKVCacheManager* cacheManager, CacheTransBufferManager* cacheTransBufferManager)
: mCacheManager{cacheManager}
, mCacheTransBufferManager{cacheTransBufferManager}
{
TLLM_CHECK(mCacheManager);
TLLM_CHECK(mCacheTransBufferManager);
}
void formatOutput(LlmRequest const& llmRequest,
std::vector<executor::kv_cache::Connection const*> const& connections, CacheState const& selfConfig,
SizeType32 selfIdx, CacheState const& destConfig, runtime::BufferManager const& bufferManager) override;
void formatInput(LlmRequest const& llmRequest,
std::vector<executor::kv_cache::Connection const*> const& connections, CacheState const& selfConfig,
SizeType32 selfIdx, CacheState const& destConfig, runtime::BufferManager const& bufferManager) override;
[[nodiscard]] bool inquireSupport(CacheState const& selfConfig, CacheState const& destConfig) const override;
[[nodiscard]] std::vector<SizeType32> getCounterparts(
CacheState const& selfConfig, SizeType32 selfIdx, CacheState const& destConfig) const override
{
return executor::kv_cache::targetIRanks(destConfig, selfConfig, selfIdx).mIRanks;
}
[[nodiscard]] BaseKVCacheManager* getCacheManager() const
{
return mCacheManager;
}
static bool needSendCache(CacheState const& selfConfig, CacheState const& destConfig, runtime::SizeType32 selfIdx);
static std::vector<executor::kv_cache::Connection const*> pickRecvConnections(
std::vector<executor::kv_cache::Connection const*> const& connections, CacheState const& selfConfig,
SizeType32 selfIdx, CacheState const& destConfig);
private:
BaseKVCacheManager* mCacheManager{};
CacheTransBufferManager* mCacheTransBufferManager;
};
} // namespace tensorrt_llm::batch_manager::kv_cache_manager