TensorRT-LLMs/cpp/tensorrt_llm/plugins/gemmSwigluPlugin/gemmSwigluPlugin.cpp
Kaiyu Xie 2ea17cdad2
Update TensorRT-LLM (#2792)
* Update TensorRT-LLM

---------

Co-authored-by: jlee <jungmoolee@clika.io>
2025-02-18 21:27:39 +08:00

447 lines
15 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION &
* AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "gemmSwigluPlugin.h"
#include "cutlass_extensions/gemm_configs.h"
#include <NvInferRuntimeBase.h>
#include <numeric>
using namespace nvinfer1;
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::kernels::cutlass_kernels;
using tensorrt_llm::plugins::GemmSwigluPluginCreator;
using tensorrt_llm::plugins::GemmSwigluPlugin;
using tensorrt_llm::plugins::GemmSwigluPluginProfiler;
using tensorrt_llm::plugins::read;
using tensorrt_llm::plugins::write;
static char const* GEMM_SWIGLU_PLUGIN_VERSION{"1"};
static char const* GEMM_SWIGLU_PLUGIN_NAME{"GemmSwiglu"};
PluginFieldCollection GemmSwigluPluginCreator::mFC{};
std::vector<nvinfer1::PluginField> GemmSwigluPluginCreator::mPluginAttributes;
size_t GemmSwigluPluginProfiler::getBytePerElement(nvinfer1::DataType type)
{
size_t bpe;
if (type == nvinfer1::DataType::kHALF || type == nvinfer1::DataType::kBF16)
{
bpe = 2;
}
else if (type == nvinfer1::DataType::kINT8 || type == nvinfer1::DataType::kFP8)
{
bpe = 1;
}
else
{
TLLM_THROW("Not recognized/implemented");
}
return bpe;
}
void GemmSwigluPluginProfiler::setQuantMode(tensorrt_llm::common::QuantMode const& quantMode)
{
mQuantMode = quantMode;
}
void GemmSwigluPluginProfiler::runTactic(
int m, int n, int k, GemmSwigluPluginProfiler::Config const& tactic, char* workspace, cudaStream_t const& stream)
{
size_t bpe = getBytePerElement(mType);
// Workspace size required by gemm runner
// NB: this function will throw exception when selected tactic exceeds SMEM, which is then
// caught by gemmPluginProfiler and it will register this tactic as invalid
size_t wsSizeRunner = mRunner->getWorkspaceSize(m, n, k);
// Workspace size required by profiling
size_t wsByteOffset = 0;
int8_t* wsBytePointer = reinterpret_cast<int8_t*>(workspace);
void* aTmp = reinterpret_cast<void*>(nextWorkspacePtr(wsBytePointer, wsByteOffset, m * k * bpe));
void* bTmp = reinterpret_cast<void*>(nextWorkspacePtr(wsBytePointer, wsByteOffset, n * k * bpe));
void* cTmp = reinterpret_cast<void*>(nextWorkspacePtr(wsBytePointer, wsByteOffset, 1 * n * bpe));
void* dTmp = reinterpret_cast<void*>(nextWorkspacePtr(wsBytePointer, wsByteOffset, m * (n / 2) * bpe));
char* workspaceTmp = reinterpret_cast<char*>(nextWorkspacePtr(wsBytePointer, wsByteOffset, wsSizeRunner));
// Run profiling
mRunner->gemm(
dTmp, aTmp, bTmp, cTmp, mQuantMode, m, n, k, 1.0, 1.0, 1.0, tactic, workspaceTmp, wsSizeRunner, stream);
}
int GemmSwigluPluginProfiler::getMaxProfileM() const
{
return 32768;
}
void GemmSwigluPluginProfiler::computeTmpSize(size_t maxM, size_t n, size_t k)
{
std::vector<size_t> workspaces = {
maxM * k * getBytePerElement(mType), // A
n * k * getBytePerElement(mType), // B
1 * n * getBytePerElement(mType), // C_bias
maxM * (n / 2) * getBytePerElement(mType), // D
mRunner->getWorkspaceSize(maxM, n, k) // workspace
};
size_t bytes = calculateTotalWorkspaceSize(workspaces.data(), workspaces.size());
setTmpWorkspaceSizeInBytes(bytes);
}
std::vector<GemmSwigluPluginProfiler::Config> GemmSwigluPluginProfiler::getTactics(int m, int n, int k) const
{
return mRunner->getConfigs();
}
GemmSwigluPlugin::GemmSwigluPlugin(QuantMode quantMode, nvinfer1::DataType type, bool hasBias, float scale_d0,
float scale_d1, float scale_output, GemmSwigluPlugin::PluginProfilerPtr const& pluginProfiler)
: mQuantMode(quantMode)
, mPluginProfiler(pluginProfiler)
, mHasBias(hasBias)
, mScaleD0(scale_d0)
, mScaleD1(scale_d1)
, mScaleOutput(scale_output)
{
init(type);
}
// Parameterized constructor
GemmSwigluPlugin::GemmSwigluPlugin(
void const* data, size_t length, GemmSwigluPlugin::PluginProfilerPtr const& pluginProfiler)
: mPluginProfiler(pluginProfiler)
{
char const *d = reinterpret_cast<char const*>(data), *a = d;
nvinfer1::DataType type;
unsigned int quantMode;
read(d, quantMode);
read(d, type);
read(d, mHasBias);
read(d, mScaleD0);
read(d, mScaleD1);
read(d, mScaleOutput);
read(d, mDims);
mQuantMode = QuantMode(quantMode);
init(type);
mPluginProfiler->deserialize(d, mDims, mGemmId);
TLLM_CHECK(d == a + length);
}
void GemmSwigluPlugin::init(nvinfer1::DataType type)
{
mType = type;
if (mType == nvinfer1::DataType::kFP8)
{
mGemmRunner = std::make_shared<CutlassFusedGatedGemmRunner<__nv_fp8_e4m3>>();
}
else
{
TLLM_THROW("Gemm Swiglu plugin only supports fp8 now");
}
mPluginProfiler->setQuantMode(mQuantMode);
mGemmId = GemmIdCore(mDims.n, mDims.k, mType);
}
// IPluginV2DynamicExt Methods
nvinfer1::IPluginV2DynamicExt* GemmSwigluPlugin::clone() const noexcept
{
auto* plugin = new GemmSwigluPlugin(*this);
return plugin;
}
nvinfer1::DimsExprs GemmSwigluPlugin::getOutputDimensions(
int outputIndex, nvinfer1::DimsExprs const* inputs, int nbInputs, nvinfer1::IExprBuilder& exprBuilder) noexcept
{
try
{
TLLM_CHECK(nbInputs == 3);
TLLM_CHECK(outputIndex == 0);
int const nbDimsA = inputs[0].nbDims;
TLLM_CHECK(nbDimsA >= 2);
DimsExprs ret;
ret.nbDims = nbDimsA;
for (int ii = 0; ii < nbDimsA - 1; ++ii)
{
ret.d[ii] = inputs[0].d[ii];
}
ret.d[nbDimsA - 1] = exprBuilder.constant(inputs[1].d[1]->getConstantValue() / 2);
return ret;
}
catch (std::exception const& e)
{
caughtError(e);
}
return DimsExprs{};
}
bool GemmSwigluPlugin::supportsFormatCombination(
int pos, nvinfer1::PluginTensorDesc const* inOut, int nbInputs, int nbOutputs) noexcept
{
switch (pos)
{
case 0:
// activation
return inOut[pos].type == mType && inOut[pos].format == TensorFormat::kLINEAR;
case 1:
// weights
return inOut[pos].type == mType && inOut[pos].format == TensorFormat::kLINEAR;
case 2:
// bias
return inOut[pos].type == mType && inOut[pos].format == TensorFormat::kLINEAR;
case 3:
// out
return inOut[pos].type == mType && inOut[pos].format == TensorFormat::kLINEAR;
default:
// Never should be here
TLLM_CHECK(false);
return false;
}
}
void GemmSwigluPlugin::configurePlugin(nvinfer1::DynamicPluginTensorDesc const* in, int nbInputs,
nvinfer1::DynamicPluginTensorDesc const* out, int nbOutputs) noexcept
{
auto const minM = std::accumulate(in[0].min.d, in[0].min.d + in[0].min.nbDims - 1, 1, std::multiplies<int>());
auto const maxM = std::accumulate(in[0].max.d, in[0].max.d + in[0].max.nbDims - 1, 1, std::multiplies<int>());
int const maxK = in[0].max.d[in[0].max.nbDims - 1];
int const maxN = in[1].max.d[1];
int const minK = in[0].min.d[in[0].min.nbDims - 1];
int const minN = in[1].min.d[1];
TLLM_CHECK_WITH_INFO(minN == maxN, "Variable out channels is not allowed");
TLLM_CHECK_WITH_INFO(minK == maxK, "Variable in channels is not allowed");
if (!mDims.isInitialized())
{
mDims = {minM, maxM, maxN, maxK};
}
mGemmId = {maxN, maxK, mType};
mWorkspaceMaxSize = mGemmRunner->getWorkspaceSize(maxM, maxN, maxK);
}
size_t GemmSwigluPlugin::getWorkspaceSize(nvinfer1::PluginTensorDesc const* inputs, int nbInputs,
nvinfer1::PluginTensorDesc const* outputs, int nbOutputs) const noexcept
{
return mWorkspaceMaxSize;
}
int GemmSwigluPlugin::enqueue(nvinfer1::PluginTensorDesc const* inputDesc, nvinfer1::PluginTensorDesc const* outputDesc,
void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) noexcept
{
// inputs
// mat1 [M(*), K]
// mat2 [K, N]
// bias [1, N]
// outputs
// mat [M(*), N / 2]
int m = 1;
for (int ii = 0; ii < inputDesc[0].dims.nbDims - 1; ++ii)
{
m *= inputDesc[0].dims.d[ii];
}
int const n = inputDesc[1].dims.d[1];
int const k = inputDesc[0].dims.d[inputDesc[0].dims.nbDims - 1];
size_t const wsSize = mGemmRunner->getWorkspaceSize(m, n, k);
auto const bestTactic = mPluginProfiler->getBestConfig(m, mGemmId);
TLLM_CHECK_WITH_INFO(bestTactic, "No valid GEMM tactic");
mGemmRunner->gemm(outputs[0], inputs[0], inputs[1], inputs[2], mQuantMode, m, n, k, mScaleD0, mScaleD1,
mScaleOutput, *bestTactic, reinterpret_cast<char*>(workspace), wsSize, stream);
return 0;
}
// IPluginV2Ext Methods
nvinfer1::DataType GemmSwigluPlugin::getOutputDataType(
int index, nvinfer1::DataType const* inputTypes, int nbInputs) const noexcept
{
TLLM_CHECK(index == 0);
return mType;
}
// IPluginV2 Methods
char const* GemmSwigluPlugin::getPluginType() const noexcept
{
return GEMM_SWIGLU_PLUGIN_NAME;
}
char const* GemmSwigluPlugin::getPluginVersion() const noexcept
{
return GEMM_SWIGLU_PLUGIN_VERSION;
}
int GemmSwigluPlugin::getNbOutputs() const noexcept
{
return 1;
}
int GemmSwigluPlugin::initialize() noexcept
{
configGemm(); // gemm profiler in action
return 0;
}
void GemmSwigluPlugin::terminate() noexcept {}
size_t GemmSwigluPlugin::getSerializationSize() const noexcept
{
return sizeof(unsigned int) + // QuantMode
sizeof(nvinfer1::DataType) + // dtype
sizeof(bool) + // hasBias
sizeof(float) * 3 + // scales
sizeof(mDims) + // Dimensions
mPluginProfiler->getSerializationSize(mGemmId); // selected tactics container size
}
void GemmSwigluPlugin::serialize(void* buffer) const noexcept
{
char *d = static_cast<char*>(buffer), *a = d;
write(d, mQuantMode.value());
write(d, mType);
write(d, mHasBias);
write(d, mScaleD0);
write(d, mScaleD1);
write(d, mScaleOutput);
write(d, mDims);
mPluginProfiler->serialize(d, mGemmId);
TLLM_CHECK(d == a + getSerializationSize());
}
void GemmSwigluPlugin::destroy() noexcept
{
// This gets called when the network containing plugin is destroyed
delete this;
}
void GemmSwigluPlugin::configGemm()
{
mPluginProfiler->profileTactics(mGemmRunner, mType, mDims, mGemmId);
}
///////////////
GemmSwigluPluginCreator::GemmSwigluPluginCreator()
{
// Fill PluginFieldCollection with PluginField arguments metadata
mPluginAttributes.clear();
mPluginAttributes.emplace_back(PluginField("type_id", nullptr, PluginFieldType::kINT32));
mPluginAttributes.emplace_back(PluginField("has_bias", nullptr, PluginFieldType::kINT8));
mPluginAttributes.emplace_back(PluginField("scale_d0", nullptr, PluginFieldType::kFLOAT32));
mPluginAttributes.emplace_back(PluginField("scale_d1", nullptr, PluginFieldType::kFLOAT32));
mPluginAttributes.emplace_back(PluginField("scale_output", nullptr, PluginFieldType::kFLOAT32));
mFC.nbFields = mPluginAttributes.size();
mFC.fields = mPluginAttributes.data();
}
char const* GemmSwigluPluginCreator::getPluginName() const noexcept
{
return GEMM_SWIGLU_PLUGIN_NAME;
}
char const* GemmSwigluPluginCreator::getPluginVersion() const noexcept
{
return GEMM_SWIGLU_PLUGIN_VERSION;
}
PluginFieldCollection const* GemmSwigluPluginCreator::getFieldNames() noexcept
{
return &mFC;
}
IPluginV2* GemmSwigluPluginCreator::createPlugin(char const* name, PluginFieldCollection const* fc) noexcept
{
PluginField const* fields = fc->fields;
TLLM_CHECK(fc->nbFields == 5);
nvinfer1::DataType type{};
bool hasBias{};
float scale_d0{};
float scale_d1{};
float scale_output{};
// Read configurations from each fields
for (int i = 0; i < fc->nbFields; ++i)
{
char const* attrName = fields[i].name;
if (!strcmp(attrName, "type_id"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
type = static_cast<nvinfer1::DataType>(*(static_cast<nvinfer1::DataType const*>(fields[i].data)));
}
else if (!strcmp(attrName, "has_bias"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT8);
hasBias = static_cast<bool>(*(static_cast<int8_t const*>(fields[i].data)));
}
else if (!strcmp(attrName, "scale_d0"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kFLOAT32);
scale_d0 = static_cast<float>(*(static_cast<float const*>(fields[i].data)));
}
else if (!strcmp(attrName, "scale_d1"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kFLOAT32);
scale_d1 = static_cast<float>(*(static_cast<float const*>(fields[i].data)));
}
else if (!strcmp(attrName, "scale_output"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kFLOAT32);
scale_output = static_cast<float>(*(static_cast<float const*>(fields[i].data)));
}
}
try
{
// GemmSwigluPluginCreator is unique and shared for an engine generation
// Create plugin profiler with shared tactics map
auto pluginProfiler = mGemmPluginProfileManager.createGemmPluginProfiler(/* inference */ false);
QuantMode quantMode = QuantMode::fromDescription();
auto* obj = new GemmSwigluPlugin(quantMode, type, hasBias, scale_d0, scale_d1, scale_output, pluginProfiler);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
catch (std::exception const& e)
{
caughtError(e);
}
return nullptr;
}
IPluginV2* GemmSwigluPluginCreator::deserializePlugin(
char const* name, void const* serialData, size_t serialLength) noexcept
{
// This object will be deleted when the network is destroyed, which will
// call GemmSwigluPlugin::destroy()
try
{
// Create plugin profiler with private tactics map which is read from the serialized engine
auto pluginProfiler = mGemmPluginProfileManager.createGemmPluginProfiler(/* inference */ true);
auto* obj = new GemmSwigluPlugin(serialData, serialLength, pluginProfiler);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
catch (std::exception const& e)
{
caughtError(e);
}
return nullptr;
}