TensorRT-LLMs/cpp/tensorrt_llm/batch_manager/makeDecodingBatchInputOutput.cpp
Robin Kobus 72057a0a64
[TRTLLM-3429] feat: Overlap scheduling in C++ runtime (#3625)
* disable overlap in encoder

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* feat: invokeGatherBatch

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* feat: overlap same batch

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* chore: add enableTrtOverlap to ExecutorConfig

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* disable overlap for beam search and spec decode

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* skip overlap tests with beam search or speculative decoding

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* moveFinishedContextRequestsToGeneration and skip unfinished requests in updateRequests

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* enable overlap in GptChunkedLongContextTests

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* feat: Enable overlap in gptManagerBenchmark

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* feat: Improve early exit

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* refactor: Use OptionalRef for newOutputTokens tensor

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* feat: Add overlap scheduling support to TRTLLMDecoder

- Updated TRTLLMDecoder to accept an `enable_overlap_scheduler` parameter.
- Modified the decoder's internal logic to utilize the overlap scheduling feature.
- Adjusted the sequence lengths handling to ensure compatibility with the new scheduling approach.
- Enhanced unit tests to include cases for the overlap scheduler with the TRTLLMDecoder.

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* fix: allNewTokens in PP

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

---------

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
2025-05-06 15:06:46 +02:00

208 lines
8.9 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/batch_manager/makeDecodingBatchInputOutput.h"
#include "tensorrt_llm/batch_manager/decoderBuffers.h"
#include "tensorrt_llm/batch_manager/llmRequest.h"
#include "tensorrt_llm/batch_manager/runtimeBuffers.h"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/cudaStream.h"
#include "tensorrt_llm/runtime/decoderState.h"
#include "tensorrt_llm/runtime/iGptDecoderBatched.h"
#include "tensorrt_llm/runtime/runtimeKernels.h"
namespace tr = tensorrt_llm::runtime;
namespace tensorrt_llm::batch_manager
{
using SizeType32 = MakeDecodingBatchInputOutput::SizeType32;
using TensorPtr = MakeDecodingBatchInputOutput::TensorPtr;
std::unique_ptr<tr::decoder_batch::Input> MakeDecodingBatchInputOutput::createDecoderBatchInputs(
std::vector<SizeType32> const& activeSlots, runtime::decoder::DecoderState const& decoderState,
std::vector<TensorPtr> const& logits, SizeType32 maxNumSequences, std::vector<TensorPtr> const& batchSlots,
TensorPtr const& cacheIndirectionInput)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const& numDecodingEngineTokens = decoderState.getNumDecodingEngineTokens();
auto const& maxDecodingEngineTokens = decoderState.getMaxDecodingEngineTokens();
auto const& maxDecodingDecoderTokens = decoderState.getMaxDecodingDecoderTokens();
auto const maxDecoderSteps = common::ceilDiv(maxDecodingEngineTokens, maxDecodingDecoderTokens);
for (SizeType32 step = 0; step < maxDecoderSteps; ++step)
{
batchSlots.at(step)->resize(maxNumSequences);
}
std::vector<SizeType32> batchIdx(maxDecoderSteps);
auto maxActiveDecoderSteps = 1;
for (auto const slot : activeSlots)
{
auto const numDecoderSteps = common::ceilDiv(numDecodingEngineTokens.at(slot), maxDecodingDecoderTokens);
maxActiveDecoderSteps = std::max(maxActiveDecoderSteps, numDecoderSteps);
for (SizeType32 step = 0; step < numDecoderSteps; ++step)
{
auto batchSlotsRange = tr::BufferRange<SizeType32>(*batchSlots.at(step));
batchSlotsRange[batchIdx[step]] = slot;
batchIdx[step]++;
}
}
for (SizeType32 step = 0; step < maxDecoderSteps; ++step)
{
batchSlots.at(step)->resize(batchIdx[step]);
}
auto constexpr singleRequest = 1;
std::vector<std::vector<tr::ITensor::SharedConstPtr>> logitsVec(maxActiveDecoderSteps);
for (SizeType32 step = 0; step < maxActiveDecoderSteps; ++step)
{
auto batchSlotsRange = tr::BufferRange<SizeType32>(*batchSlots.at(step));
for (auto slot : batchSlotsRange)
{
auto const& targetLogits = logits.at(slot);
TensorPtr logitsSlice = tr::ITensor::slice(targetLogits, step, singleRequest);
logitsVec.at(step).push_back(logitsSlice);
}
}
auto decodingInput = std::make_unique<tr::decoder_batch::Input>(logitsVec, maxActiveDecoderSteps);
decodingInput->batchSlots = batchSlots;
decodingInput->cacheIndirection = cacheIndirectionInput;
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
return decodingInput;
}
namespace
{
std::vector<SizeType32> getActiveSlots(RequestVector const& contextRequests, RequestVector const& generationRequests)
{
std::vector<SizeType32> activeSlots;
for (auto const& requests : {contextRequests, generationRequests})
{
for (auto const& llmReq : requests)
{
if (llmReq->isGenerationInProgressState() || llmReq->isLastContextChunk())
{
activeSlots.push_back(llmReq->mSeqSlot.value());
}
}
}
std::sort(activeSlots.begin(), activeSlots.end());
return activeSlots;
}
void copySequenceLengths(RequestVector const& contextRequests, RequestVector const& generationRequests,
DecoderInputBuffers const& inputBuffers, TensorPtr const& sequenceLengths, SizeType32 beamWidth, bool isTrtOverlap,
runtime::BufferManager const& manager, runtime::CudaStream const& stream)
{
auto const batchSize = contextRequests.size() + generationRequests.size();
auto batchSlotsView = tr::ITensor::slice(inputBuffers.forwardBatchSlotsRequestOrder, 0, batchSize);
auto fillValuesView = tr::ITensor::slice(inputBuffers.fillValues, 0, batchSize);
auto batchSlotsRange = tr::BufferRange<SizeType32>(*batchSlotsView);
auto fillValuesRange = tr::BufferRange<SizeType32>(*fillValuesView);
// fill buffers on host
SizeType32 batchIdx{0};
for (auto const& llmReq : contextRequests)
{
auto const currentSequenceLen = llmReq->mPromptLen + llmReq->getMaxNumGeneratedTokens();
// Get position of the current sequence in the decoder
auto const seqSlot = llmReq->mSeqSlot.value();
batchSlotsRange[batchIdx] = seqSlot;
fillValuesRange[batchIdx] = currentSequenceLen;
++batchIdx;
}
for (auto const& llmReq : generationRequests)
{
auto const currentSequenceLen
= llmReq->mPromptLen + llmReq->getMaxNumGeneratedTokens() + static_cast<SizeType32>(isTrtOverlap);
// Get position of the current sequence in the decoder
auto const seqSlot = llmReq->mSeqSlot.value();
batchSlotsRange[batchIdx] = seqSlot;
fillValuesRange[batchIdx] = currentSequenceLen;
++batchIdx;
}
// copy sequence lengths
{
auto batchSlotsDeviceView = tr::ITensor::slice(inputBuffers.forwardBatchSlotsRequestOrderDevice, 0, batchSize);
auto fillValuesViewDevice = tr::ITensor::slice(inputBuffers.fillValuesDevice, 0, batchSize);
manager.copy(*batchSlotsView, *batchSlotsDeviceView);
manager.copy(*fillValuesView, *fillValuesViewDevice);
tr::kernels::invokeFillBatch(*sequenceLengths, *batchSlotsDeviceView, beamWidth, *fillValuesViewDevice, stream);
}
}
} // namespace
std::tuple<std::unique_ptr<tr::decoder_batch::Input>, std::unique_ptr<tr::decoder_batch::Output>>
MakeDecodingBatchInputOutput::operator()(RequestVector const& contextRequests, RequestVector const& generationRequests,
DecoderBuffers& decoderBuffers, DecoderInputBuffers const& inputBuffers,
runtime::decoder::DecoderState& decoderState, runtime::ModelConfig const& modelConfig, SizeType32 maxNumSequences,
SizeType32 beamWidth, bool isTrtOverlap, runtime::BufferManager const& manager, runtime::CudaStream const& stream,
OptionalRef<RuntimeBuffers> fusedRuntimeBuffers) const
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto activeSlots = getActiveSlots(contextRequests, generationRequests);
auto decodingInput = createDecoderBatchInputs(activeSlots, decoderState, decoderBuffers.logits, maxNumSequences,
inputBuffers.forwardBatchSlots, decoderBuffers.cacheIndirectionInput);
if (modelConfig.getSpeculativeDecodingMode().hasDraftLogits())
{
decodingInput->predictedDraftLogits = decoderBuffers.draftBuffers.predictedDraftLogits;
}
if (modelConfig.getSpeculativeDecodingMode().isExplicitDraftTokens())
{
TLLM_CHECK(fusedRuntimeBuffers);
// requires mCtxGenFusion == true
decodingInput->batchSlotsRequestOrder = fusedRuntimeBuffers->seqSlots;
decodingInput->explicitDraftTokensInputs = fusedRuntimeBuffers->explicitDraftTokensBuffers->engineOutputs;
decodingInput->explicitDraftTokensLastInputs = fusedRuntimeBuffers->explicitDraftTokensBuffers->engineInputs;
}
else if (modelConfig.getSpeculativeDecodingMode().isEagle())
{
TLLM_CHECK(fusedRuntimeBuffers);
// requires mCtxGenFusion == true
decodingInput->batchSlotsRequestOrder = fusedRuntimeBuffers->seqSlots;
decodingInput->eagleInputs = fusedRuntimeBuffers->eagleBuffers->engineOutputs;
decodingInput->eagleLastInputs = fusedRuntimeBuffers->eagleBuffers->engineInputs;
}
copySequenceLengths(contextRequests, generationRequests, inputBuffers,
decoderState.getJointDecodingOutput().lengths, beamWidth, isTrtOverlap, manager, stream);
auto decodingOutput = std::make_unique<tr::decoder_batch::Output>();
decodingOutput->cacheIndirection = decoderBuffers.cacheIndirectionOutput;
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
return {std::move(decodingInput), std::move(decodingOutput)};
}
} // namespace tensorrt_llm::batch_manager