mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
153 lines
5.3 KiB
C++
153 lines
5.3 KiB
C++
/*
|
|
* SPDX-FileCopyrightText: Copyright (c) 2023-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: NVIDIA TensorRT Source Code License Agreement
|
|
*
|
|
* NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
|
* property and proprietary rights in and to this material, related
|
|
* documentation and any modifications thereto. Any use, reproduction,
|
|
* disclosure or distribution of this material and related documentation
|
|
* without an express license agreement from NVIDIA CORPORATION or
|
|
* its affiliates is strictly prohibited.
|
|
*/
|
|
|
|
#include "tensorrt_llm/common/tllmException.h"
|
|
#include "tensorrt_llm/executor/executor.h"
|
|
#include "tensorrt_llm/executor/serialization.h"
|
|
#include "tensorrt_llm/executor/types.h"
|
|
#include "tensorrt_llm/runtime/cudaStream.h"
|
|
#include <gmock/gmock.h>
|
|
#include <gtest/gtest.h>
|
|
#include <sstream>
|
|
|
|
using namespace tensorrt_llm::executor;
|
|
namespace tc = tensorrt_llm::common;
|
|
namespace tr = tensorrt_llm::runtime;
|
|
|
|
void testInvalid(
|
|
IdType taskId, std::optional<Tensor> weights, std::optional<Tensor> config, std::string const& expectedErrStr)
|
|
{
|
|
try
|
|
{
|
|
auto loraConfig = LoraConfig(taskId, weights, config);
|
|
FAIL() << "Expected TllmException";
|
|
}
|
|
catch (tc::TllmException& e)
|
|
{
|
|
EXPECT_THAT(e.what(), testing::HasSubstr(expectedErrStr));
|
|
}
|
|
catch (std::exception const& e)
|
|
{
|
|
FAIL() << "Expected TllmException";
|
|
}
|
|
}
|
|
|
|
TEST(LoraConfigTest, invalidInputs)
|
|
{
|
|
SizeType32 weightsDim0 = 32;
|
|
SizeType32 weightsDim1 = 64;
|
|
SizeType32 configDim1 = 3;
|
|
|
|
auto weights = Tensor::cpu(DataType::kFP16, {weightsDim0, weightsDim1});
|
|
auto config = Tensor::cpu(DataType::kINT32, {weightsDim0, configDim1});
|
|
auto stream = std::make_shared<tr::CudaStream>();
|
|
|
|
// This should work
|
|
auto loraConfig = LoraConfig(1, weights, config);
|
|
|
|
{
|
|
// Only one specified
|
|
testInvalid(1, std::nullopt, config, "must have both");
|
|
|
|
// Only one specified
|
|
testInvalid(1, weights, std::nullopt, "must have both");
|
|
}
|
|
|
|
{
|
|
auto invalidWeights = Tensor::cpu(DataType::kFP16, {1});
|
|
// Wrong shape
|
|
testInvalid(1, invalidWeights, config, "Expected weights tensor to have 2 dimensions");
|
|
}
|
|
{
|
|
auto invalidWeights = Tensor::gpu(DataType::kFP16, stream, {weightsDim0, weightsDim1});
|
|
// Wrong memory type
|
|
testInvalid(1, invalidWeights, config, "to be in CPU memory");
|
|
}
|
|
{
|
|
auto invalidConfig = Tensor::cpu(DataType::kFP16, {weightsDim0, 3});
|
|
// Wrong type
|
|
testInvalid(1, weights, invalidConfig, "to have type kINT32");
|
|
}
|
|
{
|
|
auto invalidConfig = Tensor::gpu(DataType::kINT32, stream, {weightsDim0, configDim1});
|
|
// Wrong memory type
|
|
testInvalid(1, weights, invalidConfig, "to be in CPU memory");
|
|
}
|
|
|
|
{
|
|
// Shapes not matching
|
|
auto invalidConfig = Tensor::cpu(DataType::kINT32, {16, configDim1});
|
|
// Wrong memory type
|
|
testInvalid(1, weights, invalidConfig, "dim 0 of lora weights and lora config to have the same size");
|
|
}
|
|
}
|
|
|
|
TEST(LoraConfigTest, serializeDeserialize)
|
|
{
|
|
IdType taskId = 1000;
|
|
|
|
SizeType32 weightsDim0 = 32;
|
|
SizeType32 weightsDim1 = 64;
|
|
SizeType32 configDim1 = 3;
|
|
|
|
auto weights = Tensor::cpu(DataType::kFP32, {weightsDim0, weightsDim1});
|
|
float* weightsData = reinterpret_cast<float*>(weights.getData());
|
|
for (int i = 0; i < weightsDim0; ++i)
|
|
{
|
|
for (int j = 0; j < weightsDim1; ++j)
|
|
{
|
|
weightsData[i * weightsDim1 + j] = (i * weightsDim1 + j) * 1.0f;
|
|
}
|
|
}
|
|
|
|
auto config = Tensor::cpu(DataType::kINT32, {weightsDim0, configDim1});
|
|
int32_t* configData = reinterpret_cast<int32_t*>(config.getData());
|
|
for (int i = 0; i < weightsDim0; ++i)
|
|
{
|
|
for (int j = 0; j < configDim1; ++j)
|
|
{
|
|
weightsData[i * configDim1 + j] = 3 * (i * configDim1 + j);
|
|
}
|
|
}
|
|
|
|
auto loraConfig = LoraConfig(taskId, weights, config);
|
|
auto serializedSize = Serialization::serializedSize(loraConfig);
|
|
|
|
std::ostringstream os;
|
|
Serialization::serialize(loraConfig, os);
|
|
EXPECT_EQ(os.str().size(), serializedSize);
|
|
|
|
std::istringstream is(os.str());
|
|
auto newLoraConfig = Serialization::deserializeLoraConfig(is);
|
|
|
|
EXPECT_EQ(newLoraConfig.getTaskId(), loraConfig.getTaskId());
|
|
EXPECT_EQ(newLoraConfig.getWeights().value().getShape().size(), loraConfig.getWeights().value().getShape().size());
|
|
EXPECT_EQ(newLoraConfig.getWeights().value().getShape()[0], loraConfig.getWeights().value().getShape()[0]);
|
|
EXPECT_EQ(newLoraConfig.getWeights().value().getShape()[1], loraConfig.getWeights().value().getShape()[1]);
|
|
float* newWeightsData = reinterpret_cast<float*>(newLoraConfig.getWeights().value().getData());
|
|
for (int i = 0; i < weightsDim0; ++i)
|
|
{
|
|
for (int j = 0; j < weightsDim1; ++j)
|
|
{
|
|
EXPECT_FLOAT_EQ(weightsData[i * weightsDim1 + j], newWeightsData[i * weightsDim1 + j]);
|
|
}
|
|
}
|
|
int32_t* newConfigData = reinterpret_cast<int32_t*>(newLoraConfig.getConfig().value().getData());
|
|
for (int i = 0; i < weightsDim0; ++i)
|
|
{
|
|
for (int j = 0; j < configDim1; ++j)
|
|
{
|
|
EXPECT_EQ(configData[i * configDim1 + j], newConfigData[i * configDim1 + j]);
|
|
}
|
|
}
|
|
}
|