mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Denis Kayshev <topenkoff@gmail.com> Co-authored-by: akhoroshev <arthoroshev@gmail.com> Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com> Update
311 lines
9.4 KiB
C++
311 lines
9.4 KiB
C++
#include <cuda_profiler_api.h>
|
|
#include <cuda_runtime.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "cutlass/numeric_types.h"
|
|
#include "tensorrt_llm/common/cudaUtils.h"
|
|
#include "tensorrt_llm/common/quantization.h"
|
|
#include "tensorrt_llm/kernels/cutlass_kernels/int8_gemm/int8_gemm.h"
|
|
#include "tensorrt_llm/kernels/weightOnlyBatchedGemv/int8SQ.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <ctime>
|
|
#include <functional>
|
|
#include <iostream>
|
|
#include <random>
|
|
#include <set>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <vector>
|
|
using namespace tensorrt_llm::kernels::smooth_quant;
|
|
|
|
void simple_assert(bool flag)
|
|
{
|
|
if (!flag)
|
|
{
|
|
throw std::runtime_error("assert failed");
|
|
}
|
|
}
|
|
|
|
struct CudaBuffer
|
|
{
|
|
void* _data;
|
|
int _size;
|
|
|
|
CudaBuffer(int size_in_bytes)
|
|
: _size(size_in_bytes)
|
|
{
|
|
cudaMalloc(&_data, _size);
|
|
}
|
|
|
|
template <typename T = void>
|
|
T* data()
|
|
{
|
|
return reinterpret_cast<T*>(_data);
|
|
}
|
|
|
|
void copy_to(void* dst)
|
|
{
|
|
cudaMemcpy(dst, _data, _size, cudaMemcpyDeviceToHost);
|
|
}
|
|
|
|
void copy_from(void* src)
|
|
{
|
|
cudaMemcpy(_data, src, _size, cudaMemcpyHostToDevice);
|
|
}
|
|
|
|
~CudaBuffer()
|
|
{
|
|
cudaFree(_data);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
float compare(void* _pa, void* _pb, int size, float scale)
|
|
{
|
|
auto pa = reinterpret_cast<T*>(_pa);
|
|
auto pb = reinterpret_cast<T*>(_pb);
|
|
float max_diff = 0.f, tot_diff = 0.f;
|
|
float max_val = 0.f;
|
|
int diff_cnt = 0;
|
|
float threshold = 1e-7;
|
|
for (int n = 0; n < size; ++n)
|
|
{
|
|
float va = static_cast<float>(pa[n]);
|
|
float vb = static_cast<float>(pb[n]);
|
|
max_val = std::max(max_val, vb);
|
|
float diff = std::abs(va - vb);
|
|
if (diff > threshold)
|
|
{
|
|
max_diff = std::max(max_diff, diff);
|
|
tot_diff += diff;
|
|
++diff_cnt;
|
|
}
|
|
}
|
|
float diff_thres = max_val * scale;
|
|
#if defined(ENABLE_BF16)
|
|
if constexpr (std::is_same_v<T, __nv_bfloat16>)
|
|
{
|
|
// bfloat16 has fewer mantissa digits than float16(10 bits for fp16 but only 7 bits for bf16), so the cumulative
|
|
// error will be larger.
|
|
diff_thres *= 3.f;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
diff_thres *= 1.5f;
|
|
}
|
|
printf("max diff %f (diff threshold %f), avg diff %f, diff cnt %d/%d\n", max_diff, diff_thres,
|
|
tot_diff / std::max(1, diff_cnt), diff_cnt, size);
|
|
return max_diff <= diff_thres;
|
|
}
|
|
|
|
template <typename T1, typename T2>
|
|
void random_fill(std::vector<T1>& vec, T2 minv, T2 maxv)
|
|
{
|
|
std::mt19937 gen(rand());
|
|
std::uniform_real_distribution<float> dis(static_cast<float>(minv), static_cast<float>(maxv));
|
|
for (auto& v : vec)
|
|
{
|
|
v = static_cast<T1>(dis(gen));
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
std::vector<tensorrt_llm::cutlass_extensions::CutlassGemmConfig> get_configs(T& runner, int k)
|
|
{
|
|
auto configs = runner.getConfigs();
|
|
return configs;
|
|
}
|
|
|
|
template <typename T>
|
|
float run_cuda_kernel(Params& params, int warmup, int iter)
|
|
{
|
|
cudaStream_t s;
|
|
cudaStreamCreate(&s);
|
|
cudaEvent_t begin, end;
|
|
cudaEventCreate(&begin);
|
|
cudaEventCreate(&end);
|
|
for (int i = 0; i < warmup; ++i)
|
|
{
|
|
tensorrt_llm::kernels::smooth_quant::int8_sq_launcher<T>(params, s);
|
|
}
|
|
cudaEventRecord(begin, s);
|
|
for (int i = 0; i < iter; ++i)
|
|
{
|
|
tensorrt_llm::kernels::smooth_quant::int8_sq_launcher<T>(params, s);
|
|
}
|
|
cudaEventRecord(end, s);
|
|
cudaEventSynchronize(end);
|
|
float time;
|
|
cudaEventElapsedTime(&time, begin, end);
|
|
cudaEventDestroy(begin);
|
|
cudaEventDestroy(end);
|
|
cudaStreamDestroy(s);
|
|
return time / iter;
|
|
}
|
|
|
|
template <typename T>
|
|
float run_cutlass_kernel(Params& params, int warmup, int iter)
|
|
{
|
|
auto runner = std::make_shared<tensorrt_llm::kernels::cutlass_kernels::CutlassInt8GemmRunner<T>>();
|
|
auto& gemm = *runner;
|
|
cudaStream_t s;
|
|
cudaStreamCreate(&s);
|
|
cudaEvent_t begin, end;
|
|
cudaEventCreate(&begin);
|
|
cudaEventCreate(&end);
|
|
auto configs = get_configs(gemm, params.k);
|
|
int ws_bytes = gemm.getWorkspaceSize(params.m, params.n, params.k);
|
|
char* ws_ptr = nullptr;
|
|
if (ws_bytes)
|
|
cudaMalloc(&ws_ptr, ws_bytes);
|
|
float fast_time = 1e8;
|
|
auto best_config = configs[0];
|
|
bool found = false;
|
|
for (auto& config : configs)
|
|
{
|
|
try
|
|
{
|
|
for (int i = 0; i < 2; ++i)
|
|
{
|
|
gemm.gemm(params.act, params.weight, params.quant_mode, params.scale_channels, params.scale_tokens,
|
|
params.output, params.m, params.n, params.k, config, ws_ptr, ws_bytes, s);
|
|
}
|
|
cudaEventRecord(begin, s);
|
|
for (int i = 0; i < 5; ++i)
|
|
{
|
|
gemm.gemm(params.act, params.weight, params.quant_mode, params.scale_channels, params.scale_tokens,
|
|
params.output, params.m, params.n, params.k, config, ws_ptr, ws_bytes, s);
|
|
}
|
|
cudaEventRecord(end, s);
|
|
cudaEventSynchronize(end);
|
|
float time;
|
|
cudaEventElapsedTime(&time, begin, end);
|
|
if (time < fast_time)
|
|
{
|
|
fast_time = time;
|
|
best_config = config;
|
|
}
|
|
found = true;
|
|
}
|
|
catch (std::exception const& e)
|
|
{
|
|
}
|
|
}
|
|
if (!found)
|
|
{
|
|
throw std::runtime_error("Have no valid config!");
|
|
}
|
|
|
|
for (int i = 0; i < warmup; ++i)
|
|
{
|
|
gemm.gemm(params.act, params.weight, params.quant_mode, params.scale_channels, params.scale_tokens,
|
|
params.output, params.m, params.n, params.k, best_config, ws_ptr, ws_bytes, s);
|
|
}
|
|
cudaEventRecord(begin, s);
|
|
for (int i = 0; i < iter; ++i)
|
|
{
|
|
gemm.gemm(params.act, params.weight, params.quant_mode, params.scale_channels, params.scale_tokens,
|
|
params.output, params.m, params.n, params.k, best_config, ws_ptr, ws_bytes, s);
|
|
}
|
|
if (ws_ptr)
|
|
cudaFree(ws_ptr);
|
|
cudaEventRecord(end, s);
|
|
cudaEventSynchronize(end);
|
|
float time;
|
|
cudaEventElapsedTime(&time, begin, end);
|
|
cudaEventDestroy(begin);
|
|
cudaEventDestroy(end);
|
|
cudaStreamDestroy(s);
|
|
return time / iter;
|
|
}
|
|
|
|
template <typename T>
|
|
bool benchmark_and_verify(int m, int n, int k, tensorrt_llm::common::QuantMode const& quant_mode, int warmup, int iter)
|
|
{
|
|
std::srand(20240123);
|
|
simple_assert(m <= 4);
|
|
static constexpr int WSizeInBits = 8;
|
|
bool per_token = quant_mode.hasPerTokenScaling();
|
|
bool per_channel = quant_mode.hasPerChannelScaling();
|
|
printf("mnk (%d, %d, %d), per token: %d, per channel: %d\n", m, n, k, per_token ? 1 : 0, per_channel ? 1 : 0);
|
|
CudaBuffer d_act(m * k);
|
|
CudaBuffer d_weight(k * n);
|
|
CudaBuffer d_scale_tokens(per_token ? m * sizeof(float) : sizeof(float));
|
|
CudaBuffer d_scale_channels(per_channel ? n * sizeof(float) : sizeof(float));
|
|
CudaBuffer d_out(m * n * sizeof(T));
|
|
std::vector<int8_t> h_act(m * k);
|
|
std::vector<int8_t> h_weight(k * n);
|
|
std::vector<float> h_scale_tokens(per_token ? m : 1), h_scale_channels(per_channel ? n : 1);
|
|
std::vector<T> h_out1(m * n), h_out2(m * n);
|
|
|
|
random_fill(h_scale_tokens, -1.f, 1.f);
|
|
random_fill(h_scale_channels, -1.f, 1.f);
|
|
|
|
for (int8_t& v : h_act)
|
|
{
|
|
v = (rand() % 256) - 128;
|
|
}
|
|
for (int8_t& v : h_weight)
|
|
{
|
|
v = (rand() % 256) - 128;
|
|
}
|
|
|
|
d_act.copy_from(h_act.data());
|
|
d_weight.copy_from(h_weight.data());
|
|
d_scale_tokens.copy_from(h_scale_tokens.data());
|
|
d_scale_channels.copy_from(h_scale_channels.data());
|
|
|
|
Params params{d_act.data<int8_t>(), d_weight.data<int8_t>(), d_scale_tokens.data<float>(),
|
|
d_scale_channels.data<float>(), d_out.data(), m, n, k, quant_mode};
|
|
|
|
float time1, time2;
|
|
time1 = run_cuda_kernel<T>(params, warmup, iter);
|
|
d_out.copy_to(h_out1.data());
|
|
time2 = run_cutlass_kernel<T>(params, warmup, iter);
|
|
d_out.copy_to(h_out2.data());
|
|
float quant_scale = 1.f / (1 << (WSizeInBits - 1));
|
|
bool pass = compare<T>(h_out1.data(), h_out2.data(), m * n, quant_scale);
|
|
printf(
|
|
"cuda kernel cost time %.6f, cutlass kernel cost time %.6f, cuda speedup %.3f\n", time1, time2, time2 / time1);
|
|
return pass;
|
|
}
|
|
|
|
TEST(Kernel, WeightOnly)
|
|
{
|
|
int const arch = tensorrt_llm::common::getSMVersion();
|
|
bool pass;
|
|
int warmup = 10, iter = 30;
|
|
std::vector<int> ms{1, 2, 4};
|
|
std::vector<int> ns{2048, 4096};
|
|
std::vector<int> ks{2048, 4096};
|
|
std::vector<tensorrt_llm::common::QuantMode> quant_modes(4);
|
|
quant_modes[0] = tensorrt_llm::common::QuantMode::fromDescription(false, false, false, false);
|
|
quant_modes[1] = tensorrt_llm::common::QuantMode::fromDescription(false, false, true, false);
|
|
quant_modes[2] = tensorrt_llm::common::QuantMode::fromDescription(false, false, false, true);
|
|
quant_modes[3] = tensorrt_llm::common::QuantMode::fromDescription(false, false, true, true);
|
|
for (auto m : ms)
|
|
{
|
|
for (auto n : ns)
|
|
{
|
|
for (auto k : ks)
|
|
{
|
|
for (auto quant_mode : quant_modes)
|
|
{
|
|
pass = benchmark_and_verify<float>(m, n, k, quant_mode, warmup, iter);
|
|
EXPECT_TRUE(pass);
|
|
pass = benchmark_and_verify<half>(m, n, k, quant_mode, warmup, iter);
|
|
EXPECT_TRUE(pass);
|
|
pass = benchmark_and_verify<int>(m, n, k, quant_mode, warmup, iter);
|
|
EXPECT_TRUE(pass);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|