mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Timur Abishev <abishev.timur@gmail.com> Co-authored-by: MahmoudAshraf97 <hassouna97.ma@gmail.com> Co-authored-by: Saeyoon Oh <saeyoon.oh@furiosa.ai> Co-authored-by: hattizai <hattizai@gmail.com>
199 lines
7.6 KiB
C++
199 lines
7.6 KiB
C++
/*
|
|
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
|
|
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/common/cudaUtils.h"
|
|
#include "tensorrt_llm/common/memoryUtils.h"
|
|
#include "tensorrt_llm/kernels/decodingCommon.h"
|
|
#include "tensorrt_llm/layers/topKSamplingLayer.h"
|
|
#include "tensorrt_llm/layers/topPSamplingLayer.h"
|
|
|
|
#include "samplingLayer.h"
|
|
#include <algorithm>
|
|
|
|
using namespace tensorrt_llm::common;
|
|
using namespace tensorrt_llm::kernels;
|
|
using namespace tensorrt_llm::runtime;
|
|
|
|
namespace tensorrt_llm::layers
|
|
{
|
|
|
|
template <typename T>
|
|
SamplingLayer<T>::SamplingLayer(executor::DecodingMode const& mode, DecoderDomain const& decoderDomain,
|
|
std::shared_ptr<BufferManager> bufferManager)
|
|
: BaseLayer(decoderDomain, bufferManager)
|
|
, mDecodingMode(mode)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
TLLM_CHECK_WITH_INFO(!mDecodingMode.isBeamSearch(), "SamplingLayer does not support Beam search mode");
|
|
TLLM_CHECK_WITH_INFO(mDecodingMode.isTopKorTopP(), "SamplingLayer requires TopK or TopP mode");
|
|
if (mDecodingMode.isTopK())
|
|
{
|
|
mSamplingLayers.emplace_back(std::make_unique<TopKSamplingLayer<T>>(decoderDomain, mBufferManager));
|
|
}
|
|
|
|
if (mDecodingMode.isTopP())
|
|
{
|
|
mSamplingLayers.emplace_back(
|
|
std::make_unique<TopPSamplingLayer<T>>(decoderDomain, mBufferManager, /* deterministic */ true));
|
|
}
|
|
|
|
allocateBuffer(decoderDomain.getBatchSize());
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void SamplingLayer<T>::allocateBuffer(SizeType32 batchSize)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
size_t workspaceSize = 0;
|
|
for (auto&& layer : mSamplingLayers)
|
|
{
|
|
workspaceSize = std::max(workspaceSize, layer->getWorkspaceSize());
|
|
}
|
|
|
|
mCurandStatesDevice
|
|
= mBufferManager->gpu(ITensor::makeShape({batchSize, sizeof(curandState_t)}), TRTDataType<int8_t>::value);
|
|
auto const batchSizeShape = ITensor::makeShape({batchSize});
|
|
mRandomSeedsDevice = mBufferManager->gpu(batchSizeShape, TRTDataType<uint64_t>::value);
|
|
mSkipDecodeDevice = mBufferManager->gpu(batchSizeShape, TRTDataType<bool>::value);
|
|
mSamplingWorkspaceDevice = mBufferManager->gpu(workspaceSize, TRTDataType<int8_t>::value);
|
|
|
|
// host buffers.
|
|
mSkipDecodeHost = mBufferManager->pinnedPool(batchSizeShape, TRTDataType<bool>::value);
|
|
TLLM_CHECK(mSkipDecodeHost != nullptr);
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void SamplingLayer<T>::setup(SizeType32 batchSize, SizeType32 beamWidth, BufferConstPtr batchSlots,
|
|
std::shared_ptr<BaseSetupParams> const& baseSetupParams)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
auto setupParams = std::dynamic_pointer_cast<SamplingSetupParams>(baseSetupParams);
|
|
|
|
// If runtime argument has single random seed, using this random seed to
|
|
// initialize the random table of all sentences. If the argument has
|
|
// [batchSize] random seeds, initializing the random table by different
|
|
// random seeds respectively. If no random seed, initialize the random table
|
|
// of all sentences by 0 directly.
|
|
auto batchSlotsPtr = bufferCastOrNull<SizeType32>(batchSlots);
|
|
if (setupParams->randomSeed)
|
|
{
|
|
auto curandStateDevicePtr = reinterpret_cast<curandState_t*>(bufferCast<int8_t>(*mCurandStatesDevice));
|
|
if (setupParams->randomSeed->size() == 1)
|
|
{
|
|
invokeCurandInitialize(
|
|
curandStateDevicePtr, batchSlotsPtr, batchSize, setupParams->randomSeed->front(), getStream());
|
|
sync_check_cuda_error();
|
|
}
|
|
else
|
|
{
|
|
TLLM_CHECK_WITH_INFO(setupParams->randomSeed->size() == batchSize, "Random seed vector size mismatch.");
|
|
auto randomSeedsDevicePtr = bufferCast<uint64_t>(*mRandomSeedsDevice);
|
|
cudaAutoCpy(randomSeedsDevicePtr, setupParams->randomSeed->data(), batchSize, getStream());
|
|
invokeCurandBatchInitialize(
|
|
curandStateDevicePtr, batchSlotsPtr, batchSize, randomSeedsDevicePtr, getStream());
|
|
sync_check_cuda_error();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Initialize curand states using the default seed 0.
|
|
auto curandStatesDevicePtr = reinterpret_cast<curandState_t*>(bufferCast<int8_t>(*mCurandStatesDevice));
|
|
invokeCurandInitialize(curandStatesDevicePtr, batchSlotsPtr, batchSize, 0, getStream());
|
|
}
|
|
|
|
if (setupParams->outputLogProbs)
|
|
{
|
|
// FIXME(nkorobov): monotonically growing
|
|
mOutputLogProbs = std::any_of(setupParams->outputLogProbs->begin(), setupParams->outputLogProbs->end(),
|
|
[this](bool outputLogProbs) { return this->mOutputLogProbs | outputLogProbs; });
|
|
}
|
|
|
|
if (setupParams->cumLogProbs)
|
|
{
|
|
// FIXME(nkorobov): monotonically growing
|
|
mCumLogProbs = std::any_of(setupParams->cumLogProbs->begin(), setupParams->cumLogProbs->end(),
|
|
[this](bool cumLogProbs) { return this->mCumLogProbs | cumLogProbs; });
|
|
}
|
|
|
|
for (auto&& layer : mSamplingLayers)
|
|
{
|
|
layer->setup(batchSize, beamWidth, batchSlots, setupParams);
|
|
}
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void SamplingLayer<T>::forwardAsync(
|
|
std::shared_ptr<BaseDecodingOutputs> const& outputs, std::shared_ptr<BaseDecodingInputs> const& baseInputs)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
auto inputs = std::dynamic_pointer_cast<SamplingInputs>(baseInputs);
|
|
|
|
auto const batchSize = inputs->logits.value()->getDimension<0>();
|
|
|
|
auto logits = bufferCast<T>(*inputs->logits.value());
|
|
auto endIds = bufferCast<TokenIdType>(*inputs->endIds);
|
|
auto batchSlots = bufferCastOrNull<SizeType32>(inputs->batchSlots);
|
|
|
|
FinishedState const* finishedInput = (inputs->finished)
|
|
? reinterpret_cast<FinishedState const*>(bufferCast<FinishedState::UnderlyingType>(*inputs->finished.value()))
|
|
: nullptr;
|
|
|
|
auto const skipTopP = !mDecodingMode.isTopP();
|
|
|
|
// Compute probabilities either for TopP or if cumLogProbs or outputLogProbs are specified
|
|
bool const skipSoftMax = skipTopP && !mOutputLogProbs && !mCumLogProbs;
|
|
|
|
inputs->curandStates = reinterpret_cast<curandState_t*>(bufferCast<int8_t>(*mCurandStatesDevice));
|
|
inputs->samplingWorkspace = mSamplingWorkspaceDevice->data();
|
|
inputs->probsComputed = !skipSoftMax;
|
|
if (!skipSoftMax)
|
|
{
|
|
invokeAddBiasSoftMax(logits, (T**) nullptr, logits, (T*) (nullptr), endIds, finishedInput, batchSlots,
|
|
batchSize, mDecoderDomain.getBatchSize(), /* bw */ 1, mDecoderDomain.getVocabSize(),
|
|
mDecoderDomain.getVocabSizePadded(), skipSoftMax, /* batchSlotLogits */ false, getStream());
|
|
sync_check_cuda_error();
|
|
}
|
|
|
|
for (auto&& layer : mSamplingLayers)
|
|
{
|
|
layer->forwardAsync(outputs, baseInputs);
|
|
}
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
size_t SamplingLayer<T>::getWorkspaceSize() const noexcept
|
|
{
|
|
return mSamplingWorkspaceDevice->getSizeInBytes();
|
|
}
|
|
|
|
template class SamplingLayer<float>;
|
|
template class SamplingLayer<half>;
|
|
|
|
} // namespace tensorrt_llm::layers
|