TensorRT-LLMs/cpp/tensorrt_llm/plugins/gptAttentionPlugin/gptAttentionPlugin.cpp
Kaiyu Xie bca9a33b02
Update TensorRT-LLM (#2008)
* Update TensorRT-LLM

---------

Co-authored-by: Timur Abishev <abishev.timur@gmail.com>
Co-authored-by: MahmoudAshraf97 <hassouna97.ma@gmail.com>
Co-authored-by: Saeyoon Oh <saeyoon.oh@furiosa.ai>
Co-authored-by: hattizai <hattizai@gmail.com>
2024-07-23 23:05:09 +08:00

1016 lines
49 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION &
* AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "gptAttentionPlugin.h"
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention.h"
#include "tensorrt_llm/kernels/gptKernels.h"
#include "tensorrt_llm/kernels/unfusedAttentionKernels.h"
#include "tensorrt_llm/plugins/common/checkMacrosPlugin.h"
#include "tensorrt_llm/plugins/common/plugin.h"
#include "tensorrt_llm/plugins/gptAttentionCommon/gptAttentionCommon.h"
#include "tensorrt_llm/plugins/gptAttentionCommon/gptAttentionCommonImpl.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/iBuffer.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include "tensorrt_llm/runtime/utils/debugUtils.h"
#include <algorithm>
#include <cstdint>
#include <functional>
#include <numeric>
using namespace nvinfer1;
using namespace tensorrt_llm::kernels;
using namespace tensorrt_llm::common;
using tensorrt_llm::plugins::GPTAttentionPluginCreator;
using tensorrt_llm::plugins::GPTAttentionPlugin;
static char const* GPT_ATTENTION_PLUGIN_VERSION{"1"};
static char const* GPT_ATTENTION_PLUGIN_NAME{"GPTAttention"};
GPTAttentionPlugin::GPTAttentionPlugin(int layer_idx, int num_heads, int vision_start, int vision_length,
int num_kv_heads, int head_size, int unidirectional, float q_scaling, float qk_tanh_scale,
tensorrt_llm::kernels::PositionEmbeddingType position_embedding_type,
int rotary_embedding_dim, // for RoPE. 0 for non-RoPE
float rotary_embedding_base, tensorrt_llm::kernels::RotaryScalingType rotary_embedding_scale_type,
float rotary_embedding_scale, float rotary_embedding_short_m_scale,
float rotary_embedding_long_m_scale, // magnitude scaling factors for Phi-3 long RoPE
int rotary_embedding_max_positions, int rotary_embedding_original_max_positions, int tp_size,
int tp_rank, // for ALiBi
bool unfuse_qkv_gemm, // for AutoPP
tensorrt_llm::kernels::ContextFMHAType context_fmha_type, bool enable_xqa, int kv_cache_quant_mode,
bool remove_input_padding, tensorrt_llm::kernels::AttentionMaskType mask_type,
tensorrt_llm::kernels::BlockSparseParams block_sparse_params, bool paged_kv_cache, int tokens_per_block,
nvinfer1::DataType type, int32_t max_context_length, bool qkv_bias_enabled, bool cross_attention, int max_distance,
bool pos_shift_enabled, bool dense_context_fmha, bool use_paged_context_fmha, bool use_fp8_context_fmha,
bool use_cache, bool is_spec_decoding_enabled, bool spec_decoding_is_generation_length_variable,
int spec_decoding_max_generation_length)
: GPTAttentionPluginCommon(layer_idx, num_heads, vision_start, vision_length, num_kv_heads, head_size,
unidirectional, q_scaling, qk_tanh_scale, position_embedding_type, rotary_embedding_dim, rotary_embedding_base,
rotary_embedding_scale_type, rotary_embedding_scale, rotary_embedding_short_m_scale,
rotary_embedding_long_m_scale, rotary_embedding_max_positions, rotary_embedding_original_max_positions, tp_size,
tp_rank, unfuse_qkv_gemm, context_fmha_type, enable_xqa, kv_cache_quant_mode, remove_input_padding, mask_type,
block_sparse_params, paged_kv_cache, tokens_per_block, type, max_context_length, qkv_bias_enabled,
cross_attention, max_distance, pos_shift_enabled, dense_context_fmha, use_paged_context_fmha,
use_fp8_context_fmha, use_cache, is_spec_decoding_enabled, spec_decoding_is_generation_length_variable,
spec_decoding_max_generation_length)
{
initEntryIdx();
}
GPTAttentionPlugin::GPTAttentionPlugin(void const* data, size_t length)
: GPTAttentionPluginCommon(data, length)
{
initEntryIdx();
}
bool GPTAttentionPlugin::isEntryUsed(IdxEntry const& entry) const
{
switch (entry)
{
case IdxEntry::QKV_TENSOR: return true;
case IdxEntry::K_TENSOR: return mUnfuseQkvGemm;
case IdxEntry::V_TENSOR: return mUnfuseQkvGemm;
case IdxEntry::SEQUENCE_LENGTH: return useKVCache();
case IdxEntry::HOST_PAST_KEY_VALUE_LENGTHS: return useKVCache();
case IdxEntry::HOST_MAX_ATTENTION_WINDOW: return true;
case IdxEntry::HOST_SINK_TOKEN_LENGTH: return true;
case IdxEntry::CONTEXT_LENGTHS: return true;
case IdxEntry::CACHE_INDIR: return useKVCache();
case IdxEntry::REQUEST_TYPES: return true;
case IdxEntry::KV_CACHE_BLOCK_OFFSETS: return useKVCache() && mPagedKVCache;
case IdxEntry::HOST_KV_CACHE_BLOCK_OFFSETS: return useKVCache() && mPagedKVCache;
case IdxEntry::HOST_KV_CACHE_POOL_POINTERS: return useKVCache() && mPagedKVCache;
case IdxEntry::PAST_KEY_VALUE: return useKVCache() && !mPagedKVCache;
case IdxEntry::KV_CACHE_QUANTIZATION_SCALE: return useKVCache() && mKVCacheQuantMode.hasKvCacheQuant();
case IdxEntry::KV_CACHE_DEQUANTIZATION_SCALE: return useKVCache() && mKVCacheQuantMode.hasKvCacheQuant();
case IdxEntry::ATTENTION_OUTPUT_QUANTIZATION_SCALE: return mFP8ContextFMHA && mKVCacheQuantMode.hasFp8Qdq();
case IdxEntry::ROTARY_INV_FREQ: return isRoPE();
case IdxEntry::ROTARY_COS_SIN: return isRoPE();
case IdxEntry::ALIBI_SLOPES: return isALiBi();
case IdxEntry::RELATIVE_ATTENTION_BIAS: return isRelativePosition();
case IdxEntry::CROSS_QKV: return isCrossAttention();
case IdxEntry::CROSS_QKV_LENGTH: return isCrossAttention();
case IdxEntry::ENCODER_INPUT_LENGTH: return isCrossAttention();
case IdxEntry::HOST_CONTEXT_LENGTH: return mRemovePadding;
case IdxEntry::QKV_BIAS_TENSOR: return mQKVBiasEnabled;
case IdxEntry::SPEC_DECODING_GENERATION_LENGTHS: return mIsSpecDecodingEnabled;
case IdxEntry::SPEC_DECODING_PACKED_MASK: return mIsSpecDecodingEnabled;
case IdxEntry::SPEC_DECODING_POSITION_OFFSETS: return mIsSpecDecodingEnabled;
case IdxEntry::HOST_RUNTIME_PERF_KNOBS: return true;
default: return false;
}
}
void GPTAttentionPlugin::initEntryIdx()
{
mEntryIdx.resize(static_cast<size_t>(IdxEntry::ENUM_SIZE));
size_t entryIdx = 0;
for (int i = 0; i < static_cast<size_t>(IdxEntry::ENUM_SIZE); i++)
{
mEntryIdx[i] = entryIdx;
entryIdx += isEntryUsed(static_cast<IdxEntry>(i));
}
}
GPTAttentionPlugin::IndexType GPTAttentionPlugin::getIdx(IdxEntry const& entry) const
{
TLLM_CHECK_WITH_INFO(
isEntryUsed(entry), common::fmtstr("getIdx() should not be used with entry %lu\n", static_cast<size_t>(entry)));
return mEntryIdx[static_cast<size_t>(entry)];
}
// IPluginV2DynamicExt Methods
GPTAttentionPlugin* GPTAttentionPlugin::clone() const noexcept
{
return dynamic_cast<GPTAttentionPlugin*>(this->cloneImpl<GPTAttentionPlugin>());
}
static int getPackedTensorHiddenDimIndex(bool removePadding)
{
return removePadding ? 1 : 2;
}
// NOTE: generation input length might be larger than one in the spec decoding mode.
int GPTAttentionPlugin::getGenerationInputSequenceLength(
nvinfer1::PluginTensorDesc const* inputDesc, int32_t localNbSeq, int32_t localNbTokens) const
{
if (mRemovePadding)
{
// Speculative decoding mode might need variable generation input sequence length.
if (mIsSpecDecodingEnabled)
{
// SPEC_DECODING_POSITION_OFFSETS: [batch_size, max_generation_input_length].
return inputDesc[getIdx(IdxEntry::SPEC_DECODING_POSITION_OFFSETS)].dims.d[1];
}
else
{
// [num_tokens, local_hidden_size] where num_tokens = batch_size * generation_input_length
TLLM_CHECK_WITH_INFO(localNbTokens % localNbSeq == 0,
"seq_len should be same for all generation requests, localNbTokens=%d, localNbSeq=%d", localNbTokens,
localNbSeq);
return localNbTokens / localNbSeq;
}
}
else
{
// We don't have IFB without mRemovePadding, so just take it out from inputDesc
// [batch_size, seq_len, local_hidden_size]
return inputDesc[getIdx(IdxEntry::QKV_TENSOR)].dims.d[1];
}
}
// outputs
// output_tensor [batch_size, seq_len, local_hidden_size] or [num_tokens, local_hidden_size]
// present_key_value_pool (optional if mPagedKVCache is false) [batch_size, 2, local_num_kv_heads, max_seq_len,
// head_size]
nvinfer1::DimsExprs GPTAttentionPlugin::getOutputDimensions(
int outputIndex, nvinfer1::DimsExprs const* inputs, int nbInputs, nvinfer1::IExprBuilder& exprBuilder) noexcept
{
TLLM_CHECK(outputIndex == 0 || (!mPagedKVCache && useKVCache() && outputIndex == 1));
if (outputIndex == 0)
{
auto ret = inputs[getIdx(IdxEntry::QKV_TENSOR)];
ret.d[getPackedTensorHiddenDimIndex(mRemovePadding)] = exprBuilder.operation(
DimensionOperation::kPROD, *exprBuilder.constant(mHeadSize), *exprBuilder.constant(mNumHeads));
return ret;
}
return inputs[getIdx(IdxEntry::PAST_KEY_VALUE)];
}
bool GPTAttentionPlugin::supportsFormatCombination(
int pos, nvinfer1::PluginTensorDesc const* inOut, int nbInputs, int nbOutputs) noexcept
{
if (pos == getIdx(IdxEntry::CONTEXT_LENGTHS) || pos == getIdx(IdxEntry::REQUEST_TYPES)
|| pos == getIdx(IdxEntry::HOST_MAX_ATTENTION_WINDOW) || pos == getIdx(IdxEntry::HOST_SINK_TOKEN_LENGTH)
|| (isEntryUsed(IdxEntry::SPEC_DECODING_PACKED_MASK) && pos == getIdx(IdxEntry::SPEC_DECODING_PACKED_MASK))
|| (isEntryUsed(IdxEntry::SPEC_DECODING_POSITION_OFFSETS)
&& pos == getIdx(IdxEntry::SPEC_DECODING_POSITION_OFFSETS))
|| (isEntryUsed(IdxEntry::SPEC_DECODING_GENERATION_LENGTHS)
&& pos == getIdx(IdxEntry::SPEC_DECODING_GENERATION_LENGTHS)))
{
return inOut[pos].type == nvinfer1::DataType::kINT32;
}
else if (pos == getIdx(IdxEntry::HOST_RUNTIME_PERF_KNOBS))
{
return inOut[pos].type == nvinfer1::DataType::kINT64;
}
else if (useKVCache()
&& (pos == getIdx(IdxEntry::SEQUENCE_LENGTH) || pos == getIdx(IdxEntry::HOST_PAST_KEY_VALUE_LENGTHS)
|| pos == getIdx(IdxEntry::CACHE_INDIR)))
{
return inOut[pos].type == nvinfer1::DataType::kINT32;
}
else if (isRoPE() && (pos == getIdx(IdxEntry::ROTARY_INV_FREQ) || pos == getIdx(IdxEntry::ROTARY_COS_SIN)))
{
return inOut[pos].type == nvinfer1::DataType::kFLOAT;
}
else if (useKVCache() && mKVCacheQuantMode.hasKvCacheQuant()
&& (pos == getIdx(IdxEntry::KV_CACHE_DEQUANTIZATION_SCALE)
|| pos == getIdx(IdxEntry::KV_CACHE_QUANTIZATION_SCALE)))
{
// kv_scale for mType->int8/fp8 and int8/fp8->mType conversion
return inOut[pos].type == nvinfer1::DataType::kFLOAT && inOut[pos].format == TensorFormat::kLINEAR;
}
else if (mFP8ContextFMHA && pos == getIdx(IdxEntry::ATTENTION_OUTPUT_QUANTIZATION_SCALE))
{
return inOut[pos].type == nvinfer1::DataType::kFLOAT && inOut[pos].format == TensorFormat::kLINEAR;
}
else if (mPagedKVCache
&& (pos == getIdx(IdxEntry::KV_CACHE_BLOCK_OFFSETS) || pos == getIdx(IdxEntry::HOST_KV_CACHE_BLOCK_OFFSETS)))
{
// kv cache block offsets
return inOut[pos].type == nvinfer1::DataType::kINT32 && inOut[pos].format == TensorFormat::kLINEAR;
}
else if (mPagedKVCache && (pos == getIdx(IdxEntry::HOST_KV_CACHE_POOL_POINTERS)))
{
// kv cache pool pointers
return inOut[pos].type == nvinfer1::DataType::kINT64 && inOut[pos].format == TensorFormat::kLINEAR;
}
else if (mKVCacheQuantMode.hasInt8KvCache()
&& (!mPagedKVCache && (pos == getIdx(IdxEntry::PAST_KEY_VALUE) || pos == nbInputs + 1)))
{
// If use Int8 K/V cache we require I/O KV values to int8
return (inOut[pos].type == nvinfer1::DataType::kINT8) && (inOut[pos].format == TensorFormat::kLINEAR);
}
else if (mKVCacheQuantMode.hasFp8KvCache()
&& (!mPagedKVCache && (pos == getIdx(IdxEntry::PAST_KEY_VALUE) || pos == nbInputs + 1)))
{
// If use FP8 K/V cache we require I/O KV values to FP8
return (inOut[pos].type == nvinfer1::DataType::kFP8) && (inOut[pos].format == TensorFormat::kLINEAR);
}
else if (mRemovePadding && (pos == getIdx(IdxEntry::HOST_CONTEXT_LENGTH)))
{
return inOut[pos].type == nvinfer1::DataType::kINT32 && inOut[pos].format == TensorFormat::kLINEAR;
}
else if (mCrossAttention
&& (pos == getIdx(IdxEntry::CROSS_QKV_LENGTH) || pos == getIdx(IdxEntry::ENCODER_INPUT_LENGTH)))
{
return inOut[pos].type == nvinfer1::DataType::kINT32;
}
else if (pos == nbInputs && mFP8ContextFMHA)
{
// Output tensor now supports fp8 data type.
return (inOut[pos].type == nvinfer1::DataType::kFP8) && (inOut[pos].format == TensorFormat::kLINEAR);
}
else
{
return (inOut[pos].type == mType) && (inOut[pos].format == TensorFormat::kLINEAR);
}
return false;
}
template <typename T, typename KVCacheBuffer>
void GPTAttentionPlugin::configurePluginImpl(nvinfer1::DynamicPluginTensorDesc const* in, int nbInputs,
nvinfer1::DynamicPluginTensorDesc const* out, int nbOutputs) noexcept
{
TLLM_CHECK(mHeadSize > 0);
int beamWidth = -1;
if (!isCrossAttention() && useKVCache())
{
// desc_val == -1 means beam_width is not static, we should look at min/max/opt.
//
// In prepareEnqueueGeneration, we'll prepare for all cases where beam_width doesn't exceed max.
// TODO(minwei): pass min AND max to prepareEnqueueGeneration instead of max only.
int desc_val = in[getIdx(IdxEntry::CACHE_INDIR)].desc.dims.d[1];
int max_val = in[getIdx(IdxEntry::CACHE_INDIR)].max.d[1];
beamWidth = desc_val == -1 ? max_val : desc_val;
}
else
{
beamWidth = 1;
}
TLLM_CHECK(beamWidth != -1);
// Commonly, cyclic_attention_window_size, and max_attention_window_size will be the same
// unless each layer has different attention window sizes.
// the kv_cache capacity.
int max_encoder_context_len = isCrossAttention() ? in[getIdx(IdxEntry::CROSS_QKV_LENGTH)].desc.dims.d[0] : 0;
int const max_attention_window_size = isCrossAttention()
? max_encoder_context_len
: (useKVCache() ? in[getIdx(IdxEntry::CACHE_INDIR)].desc.dims.d[2] : 0);
int const cyclic_attention_window_size = max_attention_window_size;
int const num_requests = 256;
int const sink_token_length = 0;
EnqueueGenerationParams<T, KVCacheBuffer> enqueueParams{/*attention_input=*/nullptr,
/*qkv_bias=*/nullptr,
/*rotary_inv_freq*/ nullptr,
/*input_seq_length=*/0,
/*sequence_lengths=*/nullptr,
/*past_kv_length=*/0, beamWidth,
/*context_lengths=*/nullptr,
/*kv_scale_orig_quant=*/nullptr,
/*kv_scale_quant_orig=*/nullptr,
/*attention_out_orig_quant=*/nullptr,
/*alibi_slopes=*/nullptr,
/*context_buf_=*/nullptr,
/*key_value_cache=*/nullptr,
/*block_offsets=*/nullptr,
/*host_primary_pool_pointer=*/nullptr,
/*host_secondary_pool_pointer=*/nullptr, max_attention_window_size, cyclic_attention_window_size,
sink_token_length, num_requests,
/*max_blocks_per_sequence=*/0,
/*cache_indir=*/nullptr,
/*workspace=*/nullptr,
/*max_context_kv_len_list=*/nullptr};
prepareEnqueueGeneration(enqueueParams);
// Always reserve SemaphoreArray (for multi-block mode) as MMHA may enable multi-block mode when shared memory is
// not enough.
auto const& ctxLenTensor = in[getIdx(IdxEntry::CONTEXT_LENGTHS)];
TLLM_CHECK_DEBUG(ctxLenTensor.max.nbDims == 1);
int32_t const max_batch_beam = in[getIdx(IdxEntry::CONTEXT_LENGTHS)].max.d[0];
reserveSemaphoreArray(mNumHeads * max_batch_beam);
}
template <typename T>
void GPTAttentionPlugin::configurePluginDispatchKVCacheType(nvinfer1::DynamicPluginTensorDesc const* in, int nbInputs,
nvinfer1::DynamicPluginTensorDesc const* out, int nbOutputs) noexcept
{
if (mPagedKVCache)
{
configurePluginImpl<T, KVBlockArray>(in, nbInputs, out, nbOutputs);
}
else
{
configurePluginImpl<T, KVLinearBuffer>(in, nbInputs, out, nbOutputs);
}
}
void GPTAttentionPlugin::configurePlugin(nvinfer1::DynamicPluginTensorDesc const* in, int nbInputs,
nvinfer1::DynamicPluginTensorDesc const* out, int nbOutputs) noexcept
{
if (mType == nvinfer1::DataType::kHALF)
{
configurePluginDispatchKVCacheType<half>(in, nbInputs, out, nbOutputs);
}
else if (mType == nvinfer1::DataType::kFLOAT)
{
configurePluginDispatchKVCacheType<float>(in, nbInputs, out, nbOutputs);
}
#ifdef ENABLE_BF16
else if (mType == nvinfer1::DataType::kBF16)
{
configurePluginDispatchKVCacheType<__nv_bfloat16>(in, nbInputs, out, nbOutputs);
}
#endif
}
size_t GPTAttentionPlugin::getWorkspaceSize(nvinfer1::PluginTensorDesc const* inputs, int nbInputs,
nvinfer1::PluginTensorDesc const* outputs, int nbOutputs) const noexcept
{
int const max_context_length = mMaxContextLength;
int const cross_qkv_length = isCrossAttention() ? inputs[getIdx(IdxEntry::CROSS_QKV_LENGTH)].dims.d[0] : 0;
int const max_num_seq = inputs[getIdx(IdxEntry::CONTEXT_LENGTHS)].dims.d[0];
auto const type = inputs[getIdx(IdxEntry::QKV_TENSOR)].type;
int const max_kv_cache_length
= isCrossAttention() ? cross_qkv_length : (useKVCache() ? inputs[getIdx(IdxEntry::CACHE_INDIR)].dims.d[2] : 0);
int const max_num_tokens
= mRemovePadding ? inputs[getIdx(IdxEntry::QKV_TENSOR)].dims.d[0] : max_num_seq * max_context_length;
size_t const context_workspace_size
= getWorkspaceSizeForContext(type, max_num_seq, max_context_length, cross_qkv_length, max_num_tokens);
int32_t const num_spec_dec_tokens
= mIsSpecDecodingEnabled ? inputs[getIdx(IdxEntry::SPEC_DECODING_POSITION_OFFSETS)].dims.d[1] : 1;
int32_t const max_batch_beam = inputs[getIdx(IdxEntry::CONTEXT_LENGTHS)].dims.d[0];
int32_t const max_num_gen_tokens = std::min(max_num_tokens, num_spec_dec_tokens * max_batch_beam);
size_t const generation_workspace_size
= getWorkspaceSizeForGeneration(type, max_num_seq, max_kv_cache_length, max_num_tokens);
size_t attention_input_workspace_size = 0;
if (mUnfuseQkvGemm)
{
int const local_hidden_units_q
= inputs[getIdx(IdxEntry::QKV_TENSOR)].dims.d[getPackedTensorHiddenDimIndex(mRemovePadding)];
int const local_hidden_units_kv
= inputs[getIdx(IdxEntry::K_TENSOR)].dims.d[getPackedTensorHiddenDimIndex(mRemovePadding)];
size_t const size = tensorrt_llm::runtime::BufferDataType(type).getSize();
size_t const attention_input_size = size * max_num_tokens * (local_hidden_units_q + 2 * local_hidden_units_kv);
size_t workspaces[1];
workspaces[0] = attention_input_size;
attention_input_workspace_size = tensorrt_llm::common::calculateTotalWorkspaceSize(workspaces, 1);
}
return std::max(context_workspace_size, generation_workspace_size) + attention_input_workspace_size;
}
static size_t getStride(nvinfer1::Dims const& dims, int n)
{
TLLM_CHECK(n >= 0 && n < dims.nbDims);
return std::accumulate(dims.d + n + 1, dims.d + dims.nbDims, 1, std::multiplies<size_t>{});
}
template <typename T, typename AttentionOutT, typename KVCacheBuffer>
int GPTAttentionPlugin::enqueueImpl(nvinfer1::PluginTensorDesc const* inputDesc,
nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream)
{
TLLM_LOG_TRACE("Attention plugin start at layer %d", mLayerIdx);
int32_t const nbSeq = inputDesc[getIdx(IdxEntry::CONTEXT_LENGTHS)].dims.d[0];
int32_t const beam_width = useKVCache() ? inputDesc[getIdx(IdxEntry::CACHE_INDIR)].dims.d[1] : 1;
RequestType const* reqTypes = static_cast<RequestType const*>(inputs[getIdx(IdxEntry::REQUEST_TYPES)]);
int32_t nbContextRequests = 0;
int32_t contextTokenIdxEnd = 0;
// count context requests
for (int32_t seqIdx = 0; seqIdx < nbSeq; seqIdx++)
{
if (reqTypes[seqIdx] != RequestType::kCONTEXT)
{
break;
}
++nbContextRequests;
contextTokenIdxEnd += mRemovePadding
? static_cast<int32_t const*>(inputs[getIdx(IdxEntry::HOST_CONTEXT_LENGTH)])[seqIdx]
: inputDesc[getIdx(IdxEntry::QKV_TENSOR)].dims.d[1];
}
for (int32_t seqIdx = nbContextRequests; seqIdx < nbSeq; seqIdx++)
{
TLLM_CHECK(reqTypes[seqIdx] == RequestType::kGENERATION);
}
// mixed requests require mRemovePadding and mPagedKVCache
if (nbContextRequests != 0 && nbContextRequests != nbSeq)
{
TLLM_CHECK(mRemovePadding && mPagedKVCache);
}
if (nbContextRequests > 0)
{
auto seqIdxBeg = 0;
auto tokenIdxBeg = 0;
auto localNbTokens = contextTokenIdxEnd;
enqueueSome<T, AttentionOutT, KVCacheBuffer>(seqIdxBeg, nbContextRequests, tokenIdxBeg, localNbTokens,
inputDesc, outputDesc, inputs, outputs, workspace, stream);
}
if (auto nbGenerationSeq = nbSeq - nbContextRequests; nbGenerationSeq > 0)
{
auto seqIdxBeg = nbContextRequests;
auto tokenIdxBeg = contextTokenIdxEnd;
// if mRemovePadding is true, we may have IFB, and need to remove context tokens.
// if mRemovePadding is false, it is only generation requests, so just multiply batch_beam and seq_len (May not
// 1 for Parallel Decoding)
auto localNbTokens = mRemovePadding
? inputDesc[getIdx(IdxEntry::QKV_TENSOR)].dims.d[0] - contextTokenIdxEnd
: inputDesc[getIdx(IdxEntry::QKV_TENSOR)].dims.d[0] * inputDesc[getIdx(IdxEntry::QKV_TENSOR)].dims.d[1];
enqueueSome<T, AttentionOutT, KVCacheBuffer>(seqIdxBeg, nbGenerationSeq, tokenIdxBeg, localNbTokens, inputDesc,
outputDesc, inputs, outputs, workspace, stream);
}
TLLM_LOG_TRACE("Attention plugin stop at layer %d", mLayerIdx);
return 0;
}
template <typename T, typename AttentionOutT, typename KVCacheBuffer>
int GPTAttentionPlugin::enqueueSome(int32_t seqIdxBeg, int32_t localNbSeq, int32_t tokenIdxBeg, int32_t localNbTokens,
nvinfer1::PluginTensorDesc const* inputDesc, nvinfer1::PluginTensorDesc const* outputDesc,
void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream)
{
// relative_attention_bias [head_num, max_seq_len, max_seq_len] (optional in relative position)
// or [head_num, num_buckets] (optional in implicit relative attention)
// cross_qkv [batch_size, seq_len, 3 * local_hidden_size] or [num_tokens, 3 * local_hidden_size]
// when enable remove_input_padding (optional in cross attention mode)
// cross_qkv_length [int] max encoder input context length (optional in cross attention mode)
// encoder_input_lengths [batch_size] raw sequence lengths (optional in cross attention mode)
T const* attention_input = static_cast<T const*>(inputs[getIdx(IdxEntry::QKV_TENSOR)])
+ inputDesc[getIdx(IdxEntry::QKV_TENSOR)].dims.d[getPackedTensorHiddenDimIndex(mRemovePadding)]
* size_t(tokenIdxBeg);
T const* qkv_bias = nullptr;
if (mQKVBiasEnabled)
{
qkv_bias = reinterpret_cast<T const*>(inputs[getIdx(IdxEntry::QKV_BIAS_TENSOR)]);
}
// Rotary inv_freq, cos_sin cache to avoid re-computing.
float const* rotary_inv_freq = nullptr;
float2 const* rotary_cos_sin = nullptr;
if (isRoPE())
{
rotary_inv_freq = reinterpret_cast<float const*>(inputs[getIdx(IdxEntry::ROTARY_INV_FREQ)]);
rotary_cos_sin = reinterpret_cast<float2 const*>(inputs[getIdx(IdxEntry::ROTARY_COS_SIN)]);
}
auto const reqTypeInBatchPtr = static_cast<RequestType const*>(inputs[getIdx(IdxEntry::REQUEST_TYPES)]) + seqIdxBeg;
bool const is_context = (reqTypeInBatchPtr[0] == RequestType::kCONTEXT);
if (mUnfuseQkvGemm)
{
int const max_seqlen = inputDesc[getIdx(IdxEntry::QKV_TENSOR)].dims.d[mRemovePadding ? 0 : 1];
int const batch_size = mRemovePadding ? 1 : inputDesc[getIdx(IdxEntry::QKV_TENSOR)].dims.d[0];
T const* attention_input_q = static_cast<T const*>(inputs[getIdx(IdxEntry::QKV_TENSOR)]);
T const* attention_input_k = static_cast<T const*>(inputs[getIdx(IdxEntry::K_TENSOR)]);
T const* attention_input_v = static_cast<T const*>(inputs[getIdx(IdxEntry::V_TENSOR)]);
size_t const hidden_units_q
= inputDesc[getIdx(IdxEntry::QKV_TENSOR)].dims.d[getPackedTensorHiddenDimIndex(mRemovePadding)];
size_t const hidden_units_kv
= inputDesc[getIdx(IdxEntry::K_TENSOR)].dims.d[getPackedTensorHiddenDimIndex(mRemovePadding)];
size_t const hidden_units = hidden_units_q + 2 * hidden_units_kv;
size_t const size_qkv = sizeof(T) * hidden_units;
size_t const size_q = sizeof(T) * hidden_units_q;
size_t const size_kv = sizeof(T) * hidden_units_kv;
size_t const total_size = size_qkv * batch_size * max_seqlen;
int8_t* workspace_byte_ptr = reinterpret_cast<int8_t*>(workspace);
size_t offset = 0;
T* attention_input_qkv = reinterpret_cast<T*>(nextWorkspacePtr(workspace_byte_ptr, offset, total_size));
workspace = reinterpret_cast<void*>(workspace_byte_ptr + offset);
cudaMemcpy2DAsync(attention_input_qkv, size_qkv, attention_input_q, size_q, size_q, batch_size * max_seqlen,
cudaMemcpyDeviceToDevice, stream);
cudaMemcpy2DAsync(attention_input_qkv + hidden_units_q, size_qkv, attention_input_k, size_kv, size_kv,
batch_size * max_seqlen, cudaMemcpyDeviceToDevice, stream);
cudaMemcpy2DAsync(attention_input_qkv + hidden_units_q + hidden_units_kv, size_qkv, attention_input_v, size_kv,
size_kv, batch_size * max_seqlen, cudaMemcpyDeviceToDevice, stream);
attention_input = attention_input_qkv + hidden_units * tokenIdxBeg;
}
int const* context_q_lengths = reinterpret_cast<int const*>(inputs[getIdx(IdxEntry::CONTEXT_LENGTHS)]) + seqIdxBeg;
int const* sequence_kv_length = useKVCache()
? static_cast<int const*>(inputs[getIdx(IdxEntry::SEQUENCE_LENGTH)]) + seqIdxBeg
: context_q_lengths;
// Note we still need context length during generation for MMHA optimization.
int32_t const max_context_q_len = [&]()
{
if (!mRemovePadding)
{
return static_cast<int>(inputDesc[getIdx(IdxEntry::QKV_TENSOR)].dims.d[1]);
}
auto const host_context_lengths
= static_cast<int32_t const*>(inputs[getIdx(IdxEntry::HOST_CONTEXT_LENGTH)]) + seqIdxBeg;
return *std::max_element(host_context_lengths, host_context_lengths + localNbSeq);
}();
int max_encoder_context_len = isCrossAttention() ? inputDesc[getIdx(IdxEntry::CROSS_QKV_LENGTH)].dims.d[0] : 0;
// for enc-dec model, since decoder_input_ids could be longer than 1,
// such model has an encoder context (for cross attn) and an decoder context (for self attn)
// clarify 3 lens:
// -- max_context_q_len: len of decoder input. No "max" concept, it's what it is given.
// Also called (decoder_)input_seq_length, normally 1 for encoder-decoder start token
// -- max_seq_len: max allowed len of decoder output, i.e. final results
// -- max_encoder_context_len: len of encoder input (in cross attn). Also called encoder_input_seq_length
int const beamWidth
= isCrossAttention() ? 1 : (useKVCache() ? inputDesc[getIdx(IdxEntry::CACHE_INDIR)].dims.d[1] : 1);
// Commonly, cyclic_attention_window_size, and max_attention_window_size will be the same
// unless each layer has different attention window sizes.
// the kv_cache capacity.
int const max_attention_window_size = isCrossAttention()
? max_encoder_context_len
: (useKVCache() ? inputDesc[getIdx(IdxEntry::CACHE_INDIR)].dims.d[2] : 0);
// The cyclic_attention_window_size will determine the cyclic kv cache position of new tokens.
// Note that this cyclic_attention_window_size might be smaller than the actual kv cache capactity.
int const cyclic_attention_window_size = isCrossAttention()
? max_encoder_context_len
: reinterpret_cast<int const*>(inputs[getIdx(IdxEntry::HOST_MAX_ATTENTION_WINDOW)])[mLayerIdx];
int const sink_token_length = reinterpret_cast<int const*>(inputs[getIdx(IdxEntry::HOST_SINK_TOKEN_LENGTH)])[0];
float const* kv_scale_orig_quant = nullptr;
float const* kv_scale_quant_orig = nullptr;
if (useKVCache() && mKVCacheQuantMode.hasKvCacheQuant())
{
assert(inputDesc[getIdx(IdxEntry::KV_CACHE_QUANTIZATION_SCALE)].type == nvinfer1::DataType::kFLOAT);
assert(inputDesc[getIdx(IdxEntry::KV_CACHE_DEQUANTIZATION_SCALE)].type == nvinfer1::DataType::kFLOAT);
kv_scale_orig_quant = reinterpret_cast<float const*>(inputs[getIdx(IdxEntry::KV_CACHE_QUANTIZATION_SCALE)]);
kv_scale_quant_orig = reinterpret_cast<float const*>(inputs[getIdx(IdxEntry::KV_CACHE_DEQUANTIZATION_SCALE)]);
}
float const* attention_output_orig_quant = nullptr;
if (mFP8ContextFMHA)
{
assert(inputDesc[getIdx(IdxEntry::ATTENTION_OUTPUT_QUANTIZATION_SCALE)].type == nvinfer1::DataType::kFLOAT);
attention_output_orig_quant
= reinterpret_cast<float const*>(inputs[getIdx(IdxEntry::ATTENTION_OUTPUT_QUANTIZATION_SCALE)]);
}
int max_blocks_per_sequence = 0;
kernels::KVBlockArray::DataType* block_offsets = nullptr;
kernels::KVBlockArray::DataType* host_block_offsets = nullptr;
void* host_primary_pool_pointer = nullptr;
void* host_secondary_pool_pointer = nullptr;
if (useKVCache() && mPagedKVCache)
{
auto const& kvCacheBlockOffsets = inputDesc[getIdx(IdxEntry::KV_CACHE_BLOCK_OFFSETS)];
auto const& kvCacheBlockOffsetsShape = inputDesc[getIdx(IdxEntry::KV_CACHE_BLOCK_OFFSETS)].dims;
max_blocks_per_sequence = kvCacheBlockOffsetsShape.d[kvCacheBlockOffsetsShape.nbDims - 1];
auto const seqStride = getStride(kvCacheBlockOffsetsShape, 0);
auto const seqOffset = seqIdxBeg * seqStride;
block_offsets
= reinterpret_cast<kernels::KVBlockArray::DataType*>(inputs[getIdx(IdxEntry::KV_CACHE_BLOCK_OFFSETS)])
+ seqOffset;
host_block_offsets
= reinterpret_cast<kernels::KVBlockArray::DataType*>(inputs[getIdx(IdxEntry::HOST_KV_CACHE_BLOCK_OFFSETS)])
+ seqOffset;
auto const* const typed_host_pool_pointers
= static_cast<char* const*>(inputs[getIdx(IdxEntry::HOST_KV_CACHE_POOL_POINTERS)]);
auto const cacheElemSize = (mKVCacheQuantMode.hasKvCacheQuant() ? 1 : sizeof(T));
auto const blockSize = mTokensPerBlock * mNumKVHeads * mHeadSize;
auto const bytesPerBlock = blockSize * cacheElemSize;
auto const layerOffset = mLayerIdx * 2 * bytesPerBlock;
host_primary_pool_pointer = reinterpret_cast<void*>(typed_host_pool_pointers[0] + layerOffset);
host_secondary_pool_pointer = reinterpret_cast<void*>(typed_host_pool_pointers[1] + layerOffset);
}
AttentionOutT* context_buf_ = static_cast<AttentionOutT*>(outputs[0])
+ outputDesc[0].dims.d[getPackedTensorHiddenDimIndex(mRemovePadding)] * tokenIdxBeg;
void* key_value_cache = nullptr;
if (useKVCache() && !mPagedKVCache)
{
auto const cacheElemSize = (mKVCacheQuantMode.hasKvCacheQuant() ? 1 : sizeof(T));
key_value_cache
= static_cast<std::byte*>(outputs[1]) + cacheElemSize * getStride(outputDesc[1].dims, 0) * seqIdxBeg;
void const* past_key_value_cache = inputs[getIdx(IdxEntry::PAST_KEY_VALUE)];
if (past_key_value_cache != outputs[1])
{
auto shape = outputDesc[1].dims;
auto const size = std::accumulate(shape.d, shape.d + shape.nbDims, 1, std::multiplies<size_t>{});
cudaMemcpyAsync(outputs[1], past_key_value_cache, size, cudaMemcpyDeviceToDevice, stream);
}
}
T const* alibi_slopes = isALiBi() ? static_cast<T const*>(inputs[getIdx(IdxEntry::ALIBI_SLOPES)]) : nullptr;
int const* spec_decoding_packed_mask = nullptr;
int const* spec_decoding_position_offsets = nullptr;
int const* spec_decoding_generation_lengths = nullptr;
int num_decoding_draft_tokens = 0;
if (mIsSpecDecodingEnabled)
{
// Second dimension of spec_decoding_position_offsets is num_decoding_draft_tokens + 1.
// [batch_size, num_decoding_draft_tokens + 1]
num_decoding_draft_tokens = inputDesc[getIdx(IdxEntry::SPEC_DECODING_POSITION_OFFSETS)].dims.d[1] - 1;
if (num_decoding_draft_tokens > 0)
{
// spec_decoding_* tensors are not filled for context requests. Hence, always strting from 0th index
int32_t constexpr genSeqIdx = 0;
spec_decoding_packed_mask = static_cast<int const*>(inputs[getIdx(IdxEntry::SPEC_DECODING_PACKED_MASK)])
+ genSeqIdx * getStride(inputDesc[getIdx(IdxEntry::SPEC_DECODING_PACKED_MASK)].dims, 0);
// Packed as [num_tokens, packed_mask_size]
// Use seqIdxBeg * (num_decoding_draft_tokens + 1) here as only generation tokens have the packed_mask
// buffer.
// TODO: support variable sequence length based on generationTokenIdxBeg.
spec_decoding_packed_mask = static_cast<int const*>(inputs[getIdx(IdxEntry::SPEC_DECODING_PACKED_MASK)])
+ genSeqIdx * (num_decoding_draft_tokens + 1)
* getStride(inputDesc[getIdx(IdxEntry::SPEC_DECODING_PACKED_MASK)].dims, 0);
spec_decoding_position_offsets
= static_cast<int const*>(inputs[getIdx(IdxEntry::SPEC_DECODING_POSITION_OFFSETS)])
+ genSeqIdx * getStride(inputDesc[getIdx(IdxEntry::SPEC_DECODING_POSITION_OFFSETS)].dims, 0);
spec_decoding_generation_lengths
= static_cast<int const*>(inputs[getIdx(IdxEntry::SPEC_DECODING_GENERATION_LENGTHS)]) + genSeqIdx;
}
}
int32_t const* max_context_kv_len_list = useKVCache()
? static_cast<int const*>(inputs[getIdx(IdxEntry::HOST_PAST_KEY_VALUE_LENGTHS)]) + seqIdxBeg
: nullptr;
int32_t const max_context_kv_len = useKVCache()
? *std::max_element(max_context_kv_len_list, max_context_kv_len_list + localNbSeq)
: max_context_q_len;
if (is_context) // context stage
{
int const batch_size = localNbSeq;
int const request_batch_size = batch_size;
// num of total tokens (without paddings when remove paddings).
int num_encoder_tokens = 0;
if (isCrossAttention())
{
if (!mRemovePadding)
{
num_encoder_tokens = request_batch_size * max_encoder_context_len;
}
else
{
num_encoder_tokens = inputDesc[getIdx(IdxEntry::CROSS_QKV)].dims.d[0];
}
}
EnqueueContextParams<T, KVCacheBuffer> enqueue_params{attention_input, qkv_bias, rotary_inv_freq,
rotary_cos_sin, max_context_q_len, max_context_kv_len, max_attention_window_size,
cyclic_attention_window_size, sink_token_length, context_q_lengths, sequence_kv_length, kv_scale_orig_quant,
kv_scale_quant_orig, attention_output_orig_quant, alibi_slopes, context_buf_, key_value_cache,
block_offsets, host_block_offsets, host_primary_pool_pointer, host_secondary_pool_pointer, batch_size,
localNbTokens, max_blocks_per_sequence, workspace};
if (isRelativePosition())
{
enqueue_params.relative_attention_bias
= static_cast<T const*>(inputs[getIdx(IdxEntry::RELATIVE_ATTENTION_BIAS)]);
enqueue_params.relative_attention_bias_stride
= inputDesc[getIdx(IdxEntry::RELATIVE_ATTENTION_BIAS)].dims.d[1]; // max_seq_len or num_buckets
}
if (isCrossAttention())
{
enqueue_params.cross_qkv = static_cast<T const*>(inputs[getIdx(IdxEntry::CROSS_QKV)]);
enqueue_params.cross_qkv_length = max_encoder_context_len;
enqueue_params.encoder_input_lengths
= reinterpret_cast<int const*>(inputs[getIdx(IdxEntry::ENCODER_INPUT_LENGTH)]) + seqIdxBeg;
enqueue_params.num_encoder_tokens = num_encoder_tokens;
}
enqueueContext<T, KVCacheBuffer>(enqueue_params, stream);
{
std::string const afterContexStr = "ctx attention at layer " + std::to_string(mLayerIdx);
TLLM_CHECK_DEBUG_WITH_INFO(
tensorrt_llm::runtime::utils::tensorHasNan(localNbTokens,
outputDesc[0].dims.d[getPackedTensorHiddenDimIndex(mRemovePadding)],
mFP8ContextFMHA ? nvinfer1::DataType::kFP8 : mType, context_buf_, stream, afterContexStr)
== false,
"Found Nan in " + afterContexStr);
}
}
else // generation stage; max_context_q_len == input_seq_len == 1
{
TLLM_CHECK_WITH_INFO(useKVCache(), "KV-cache-less is only supported for context");
int batch_beam = localNbSeq;
TLLM_CHECK(batch_beam % beamWidth == 0);
int32_t const num_requests = batch_beam / beamWidth;
int const* cache_indir
= beamWidth == 1 ? nullptr : reinterpret_cast<int const*>(inputs[getIdx(IdxEntry::CACHE_INDIR)]);
int const* host_context_lengths
= mRemovePadding ? reinterpret_cast<int const*>(inputs[getIdx(IdxEntry::HOST_CONTEXT_LENGTH)]) : nullptr;
// multi block mode is only used in enqueueGeneration
int64_t const* runtime_perf_knobs
= static_cast<int64_t const*>(inputs[getIdx(IdxEntry::HOST_RUNTIME_PERF_KNOBS)]);
// Medusa: the max input sequence length if variable sequence length is needed.
int const input_seq_length = getGenerationInputSequenceLength(inputDesc, localNbSeq, localNbTokens);
auto qkvDims = inputDesc[getIdx(IdxEntry::QKV_TENSOR)].dims;
TLLM_CHECK_WITH_INFO(input_seq_length == 1 || mIsSpecDecodingEnabled,
"Only speculative decoding mode supports input length > 1 in the generation phase, input_seq_length=%d, "
"mIsSpecDecodingEnabled=%s, nDims=%d, (" FMT_DIM ", " FMT_DIM ", " FMT_DIM ")",
input_seq_length, mIsSpecDecodingEnabled ? "true" : "false", qkvDims.nbDims, qkvDims.d[0], qkvDims.d[1],
qkvDims.d[2]);
TLLM_CHECK_WITH_INFO(
input_seq_length == num_decoding_draft_tokens + 1, "The generation input length is not expected.");
EnqueueGenerationParams<T, KVCacheBuffer> enqueue_params{attention_input, qkv_bias, rotary_inv_freq,
input_seq_length, sequence_kv_length, max_context_kv_len, beamWidth, context_q_lengths, kv_scale_orig_quant,
kv_scale_quant_orig, attention_output_orig_quant, alibi_slopes, context_buf_, key_value_cache,
block_offsets, host_primary_pool_pointer, host_secondary_pool_pointer, max_attention_window_size,
cyclic_attention_window_size, sink_token_length, num_requests, max_blocks_per_sequence, cache_indir,
mMultiBlockSemaphores.get(), workspace, max_context_kv_len_list};
enqueue_params.host_context_lengths = host_context_lengths;
enqueue_params.runtime_perf_knobs = runtime_perf_knobs;
if (isRelativePosition())
{
enqueue_params.relative_attention_bias
= static_cast<T const*>(inputs[getIdx(IdxEntry::RELATIVE_ATTENTION_BIAS)]);
enqueue_params.relative_attention_bias_stride
= inputDesc[getIdx(IdxEntry::RELATIVE_ATTENTION_BIAS)].dims.d[1]; // max_seq_len or num_buckets
}
if (isCrossAttention())
{
enqueue_params.encoder_input_lengths
= reinterpret_cast<int const*>(inputs[getIdx(IdxEntry::ENCODER_INPUT_LENGTH)]) + seqIdxBeg;
}
if (mIsSpecDecodingEnabled)
{
enqueue_params.spec_decoding_packed_mask = spec_decoding_packed_mask;
enqueue_params.spec_decoding_position_offsets = spec_decoding_position_offsets;
enqueue_params.spec_decoding_generation_lengths = spec_decoding_generation_lengths;
enqueue_params.spec_decoding_is_generation_length_variable = mSpecDecodingIsGenerationLengthVariable;
enqueue_params.spec_decoding_max_generation_length = mSpecDecodingMaxGenerationLength;
}
enqueue_params.total_num_input_tokens = localNbTokens;
enqueueGeneration<T, KVCacheBuffer>(enqueue_params, stream);
{
std::string const afterGenStr = "gen attention at layer " + std::to_string(mLayerIdx);
{
TLLM_CHECK_DEBUG_WITH_INFO(
tensorrt_llm::runtime::utils::tensorHasNan(localNbTokens,
outputDesc[0].dims.d[getPackedTensorHiddenDimIndex(mRemovePadding)],
mFP8ContextFMHA ? nvinfer1::DataType::kFP8 : mType, context_buf_, stream, afterGenStr)
== false,
"Found Nan in " + afterGenStr);
}
}
}
return 0;
}
template <typename T, typename AttentionOutT>
int GPTAttentionPlugin::enqueueDispatchKVCacheType(nvinfer1::PluginTensorDesc const* inputDesc,
nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream)
{
if (mPagedKVCache)
{
return enqueueImpl<T, AttentionOutT, KVBlockArray>(inputDesc, outputDesc, inputs, outputs, workspace, stream);
}
else
{
return enqueueImpl<T, AttentionOutT, KVLinearBuffer>(inputDesc, outputDesc, inputs, outputs, workspace, stream);
}
return 0;
}
int GPTAttentionPlugin::enqueue(nvinfer1::PluginTensorDesc const* inputDesc,
nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream) noexcept
{
if (isBuilding())
{
return 0;
}
if (mType == nvinfer1::DataType::kHALF)
{
#ifdef ENABLE_FP8
if (mFP8ContextFMHA)
{
return enqueueDispatchKVCacheType<half, __nv_fp8_e4m3>(
inputDesc, outputDesc, inputs, outputs, workspace, stream);
}
#endif
return enqueueDispatchKVCacheType<half>(inputDesc, outputDesc, inputs, outputs, workspace, stream);
}
else if (mType == nvinfer1::DataType::kFLOAT)
{
return enqueueDispatchKVCacheType<float>(inputDesc, outputDesc, inputs, outputs, workspace, stream);
}
#ifdef ENABLE_BF16
else if (mType == nvinfer1::DataType::kBF16)
{
#ifdef ENABLE_FP8
if (mFP8ContextFMHA)
{
return enqueueDispatchKVCacheType<__nv_bfloat16, __nv_fp8_e4m3>(
inputDesc, outputDesc, inputs, outputs, workspace, stream);
}
#endif
return enqueueDispatchKVCacheType<__nv_bfloat16>(inputDesc, outputDesc, inputs, outputs, workspace, stream);
}
#endif
return 0;
}
// IPluginV2Ext Methods
nvinfer1::DataType GPTAttentionPlugin::getOutputDataType(
int index, nvinfer1::DataType const* inputTypes, int nbInputs) const noexcept
{
TLLM_CHECK(index == 0 || (!mPagedKVCache && index == 1));
if (index == 0)
{
return mFP8ContextFMHA && mEnableContextFMHA ? nvinfer1::DataType::kFP8
: inputTypes[getIdx(IdxEntry::QKV_TENSOR)];
}
else
{
return inputTypes[getIdx(IdxEntry::PAST_KEY_VALUE)];
}
}
// IPluginV2 Methods
char const* GPTAttentionPlugin::getPluginType() const noexcept
{
return GPT_ATTENTION_PLUGIN_NAME;
}
char const* GPTAttentionPlugin::getPluginVersion() const noexcept
{
return GPT_ATTENTION_PLUGIN_VERSION;
}
int GPTAttentionPlugin::getNbOutputs() const noexcept
{
return (mPagedKVCache || !useKVCache()) ? 1 : 2;
}
size_t GPTAttentionPlugin::getSerializationSize() const noexcept
{
return GPTAttentionPluginCommon::getCommonSerializationSize();
}
void GPTAttentionPlugin::serialize(void* buffer) const noexcept
{
GPTAttentionPluginCommon::serializeCommon(buffer);
}
///////////////
GPTAttentionPluginCreator::GPTAttentionPluginCreator()
: GPTAttentionPluginCreatorCommon()
{
mPluginAttributes.emplace_back(PluginField("in_flight_batching", nullptr, PluginFieldType::kINT8, 0));
mFC.nbFields = mPluginAttributes.size();
mFC.fields = mPluginAttributes.data();
}
char const* GPTAttentionPluginCreator::getPluginName() const noexcept
{
return GPT_ATTENTION_PLUGIN_NAME;
}
char const* GPTAttentionPluginCreator::getPluginVersion() const noexcept
{
return GPT_ATTENTION_PLUGIN_VERSION;
}
PluginFieldCollection const* GPTAttentionPluginCreator::getFieldNames() noexcept
{
return &mFC;
}
IPluginV2* GPTAttentionPluginCreator::createPlugin(char const* name, PluginFieldCollection const* fc) noexcept
{
PluginFieldParser p{fc->nbFields, fc->fields};
try
{
auto* obj = new GPTAttentionPlugin(p.getScalar<int32_t>("layer_idx").value(),
p.getScalar<int32_t>("num_heads").value(), p.getScalar<int32_t>("vision_start").value(),
p.getScalar<int32_t>("vision_length").value(), p.getScalar<int32_t>("num_kv_heads").value(),
p.getScalar<int32_t>("head_size").value(), p.getScalar<int32_t>("unidirectional").value(),
p.getScalar<float>("q_scaling").value(), p.getScalar<float>("qk_tanh_scale").value(),
static_cast<PositionEmbeddingType>(p.getScalar<int8_t>("position_embedding_type").value()),
p.getScalar<int32_t>("rotary_embedding_dim").value(), p.getScalar<float>("rotary_embedding_base").value(),
static_cast<RotaryScalingType>(p.getScalar<int8_t>("rotary_embedding_scale_type").value()),
p.getScalar<float>("rotary_embedding_scale").value(),
p.getScalar<float>("rotary_embedding_short_m_scale").value(),
p.getScalar<float>("rotary_embedding_long_m_scale").value(),
p.getScalar<int32_t>("rotary_embedding_max_positions").value(),
p.getScalar<int32_t>("rotary_embedding_original_max_positions").value(),
static_cast<int32_t>(p.getScalar<int32_t>("tp_size").value()),
static_cast<int32_t>(p.getScalar<int32_t>("tp_rank").value()),
static_cast<bool>(p.getScalar<int8_t>("unfuse_qkv_gemm").value()),
static_cast<ContextFMHAType>(p.getScalar<int8_t>("context_fmha_type").value()),
static_cast<bool>(p.getScalar<int8_t>("enable_xqa").value()),
p.getScalar<int32_t>("kv_cache_quant_mode").value(),
static_cast<bool>(p.getScalar<int8_t>("remove_input_padding").value()),
static_cast<AttentionMaskType>(p.getScalar<int32_t>("mask_type").value()),
BlockSparseParams{p.getScalar<int32_t>("block_sparse_block_size").value(),
static_cast<bool>(p.getScalar<int8_t>("block_sparse_homo_head_pattern").value()),
p.getScalar<int32_t>("block_sparse_num_local_blocks").value(),
p.getScalar<int32_t>("block_sparse_vertical_stride").value()},
static_cast<bool>(p.getScalar<int32_t>("paged_kv_cache").value()),
p.getScalar<int32_t>("tokens_per_block").value(),
static_cast<nvinfer1::DataType>(p.getScalar<int32_t>("type_id").value()),
p.getScalar<int32_t>("max_context_length").value(),
static_cast<bool>(p.getScalar<int8_t>("qkv_bias_enabled").value()),
static_cast<bool>(p.getScalar<int8_t>("do_cross_attention").value()),
static_cast<int32_t>(p.getScalar<int32_t>("max_distance").value()),
static_cast<bool>(p.getScalar<int8_t>("pos_shift_enabled").value()),
static_cast<bool>(p.getScalar<int8_t>("dense_context_fmha").value()),
static_cast<bool>(p.getScalar<int8_t>("use_paged_context_fmha").value()),
static_cast<bool>(p.getScalar<int8_t>("use_fp8_context_fmha").value()),
static_cast<bool>(p.getScalar<int32_t>("use_cache").value()),
static_cast<bool>(p.getScalar<int8_t>("is_spec_decoding_enabled").value()),
static_cast<bool>(p.getScalar<int8_t>("spec_decoding_is_generation_length_variable").value()),
p.getScalar<int32_t>("spec_decoding_max_generation_length").value());
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
catch (std::exception const& e)
{
caughtError(e);
}
return nullptr;
}
IPluginV2* GPTAttentionPluginCreator::deserializePlugin(
char const* name, void const* serialData, size_t serialLength) noexcept
{
// This object will be deleted when the network is destroyed, which will
// call GPTAttentionPlugin::destroy()
try
{
auto* obj = new GPTAttentionPlugin(serialData, serialLength);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
catch (std::exception const& e)
{
caughtError(e);
}
return nullptr;
}