mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Timur Abishev <abishev.timur@gmail.com> Co-authored-by: MahmoudAshraf97 <hassouna97.ma@gmail.com> Co-authored-by: Saeyoon Oh <saeyoon.oh@furiosa.ai> Co-authored-by: hattizai <hattizai@gmail.com>
750 lines
32 KiB
Python
750 lines
32 KiB
Python
import argparse
|
|
import json
|
|
import os
|
|
import time
|
|
import traceback
|
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
from typing import Dict, Optional, Tuple
|
|
|
|
import safetensors
|
|
import torch
|
|
from transformers import AutoModelForCausalLM, FalconConfig, FalconForCausalLM
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm.mapping import Mapping
|
|
from tensorrt_llm.models.convert_utils import (iterate_shard_files,
|
|
load_state_dict,
|
|
retrieved_layer_index_from_name)
|
|
from tensorrt_llm.quantization import QuantAlgo
|
|
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--model_dir', type=str, default=None)
|
|
parser.add_argument('--tp_size',
|
|
type=int,
|
|
default=1,
|
|
help='N-way tensor parallelism size')
|
|
parser.add_argument('--pp_size',
|
|
type=int,
|
|
default=1,
|
|
help='N-way pipeline parallelism size')
|
|
parser.add_argument('--dtype',
|
|
type=str,
|
|
default='float16',
|
|
choices=['float32', 'bfloat16', 'float16'])
|
|
parser.add_argument(
|
|
'--use_parallel_embedding',
|
|
action="store_true",
|
|
default=False,
|
|
help=
|
|
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
|
|
)
|
|
parser.add_argument(
|
|
'--embedding_sharding_dim',
|
|
type=int,
|
|
default=0,
|
|
choices=[0, 1],
|
|
help=
|
|
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
|
|
'To shard it along hidden dimension, set embedding_sharding_dim=1'
|
|
'Note: embedding sharing is only enabled when embedding_sharding_dim = 0'
|
|
)
|
|
parser.add_argument(
|
|
'--use_embedding_sharing',
|
|
action="store_true",
|
|
default=False,
|
|
help=
|
|
'Try to reduce the engine size by sharing the embedding lookup table between two layers.'
|
|
'Note: the flag might not take effect when the criteria are not met.')
|
|
|
|
parser.add_argument(
|
|
'--use_weight_only',
|
|
default=False,
|
|
action="store_true",
|
|
help='Quantize weights for the various GEMMs to INT4/INT8.'
|
|
'See --weight_only_precision to set the precision')
|
|
parser.add_argument(
|
|
'--weight_only_precision',
|
|
const='int8',
|
|
type=str,
|
|
nargs='?',
|
|
default='int8',
|
|
choices=['int8', 'int4'],
|
|
help=
|
|
'Define the precision for the weights when using weight-only quantization.'
|
|
'You must also use --use_weight_only for that argument to have an impact.'
|
|
)
|
|
|
|
parser.add_argument('--load_by_shard',
|
|
action='store_true',
|
|
help='Load a pretrained model shard-by-shard.')
|
|
parser.add_argument('--output_dir',
|
|
type=str,
|
|
default='tllm_checkpoint',
|
|
help='The path to save the TensorRT-LLM checkpoint')
|
|
parser.add_argument(
|
|
'--workers',
|
|
type=int,
|
|
default=1,
|
|
help='The number of workers for converting checkpoint in parallel')
|
|
parser.add_argument('--log_level', type=str, default='info')
|
|
args = parser.parse_args()
|
|
|
|
tensorrt_llm.logger.set_level(args.log_level)
|
|
return args
|
|
|
|
|
|
def load_falcon_config(model_dir: str) -> FalconConfig:
|
|
""" Helper utility to load FalconConfig.
|
|
|
|
A pretrained checkpoint from modeling_RW.py has a different structure
|
|
and is not compatible with `transformers.FalconConfig` and
|
|
`transformers.FalconModel`. We need to manually set the config values.
|
|
"""
|
|
|
|
config = FalconConfig.from_pretrained(model_dir)
|
|
# Falcon-7B config may not have num_kv_heads or n_head_kv.
|
|
# Although Falcon-180B uses GQA (num_kv_heads=8), its config
|
|
# has multi_query=True.
|
|
if getattr(config, 'multi_query', False) and \
|
|
not getattr(config, 'new_decoder_architecture', False):
|
|
config.num_kv_heads = 1
|
|
|
|
if config.model_type not in ['RefinedWebModel', 'RefinedWeb']:
|
|
return config
|
|
|
|
if config.model_type == 'RefinedWeb':
|
|
# Case 1. Falcon-40B / Falcon-40B-instruct
|
|
# https://huggingface.co/tiiuae/falcon-40b/blob/main/config.json
|
|
config.num_hidden_layers = config.n_layer
|
|
config.num_attention_heads = config.n_head
|
|
config.num_kv_heads = config.n_head_kv
|
|
config.new_decoder_architecture = True
|
|
elif config.model_type == 'RefinedWebModel':
|
|
# Case 2. Falcon-7B / Falcon-7B-instruct
|
|
# https://huggingface.co/tiiuae/falcon-7b/blob/main/config.json
|
|
config.num_hidden_layers = config.n_layer
|
|
config.num_attention_heads = config.n_head
|
|
config.num_kv_heads = 1 if config.multi_query else config.n_head
|
|
config.new_decoder_architecture = False
|
|
else:
|
|
raise ValueError("Shouldn't reach here.")
|
|
config.model_type = 'falcon'
|
|
|
|
return config
|
|
|
|
|
|
def split(weight: torch.Tensor,
|
|
tp_size: int,
|
|
rank: int = 0,
|
|
dim: int = 0) -> torch.Tensor:
|
|
if tp_size == 1:
|
|
return weight
|
|
elif weight.ndim == 1:
|
|
return torch.chunk(weight, tp_size)[rank].clone()
|
|
else:
|
|
return torch.chunk(weight, tp_size, dim=dim)[rank].clone()
|
|
|
|
|
|
def reorder_qkv_weight_or_bias(weight: torch.Tensor,
|
|
head_dim: int,
|
|
num_heads: int,
|
|
num_kv_heads: Optional[int] = None,
|
|
tp_size: int = 1,
|
|
is_bias: bool = False) -> torch.Tensor:
|
|
""" Reorder the qkv weight for TRT-LLM use.
|
|
|
|
The shape of the fused QKV weights in HF is different from the shape that
|
|
TRT-LLM requires. In particular, the weight of HF consists of interleaved
|
|
q, k, v head weights, while that of TRT-LLM is contiguous.
|
|
HF : [q1, k1, v1, ..., qh, kh, vh]
|
|
TRT-LLM: [q1, ..., qh, k1, ..., kh, v1, vh]
|
|
where qi, vi, ki are weight vectors corresponding to attention head i.
|
|
It's similar to multi/grouped query attention cases.
|
|
|
|
We reorder and split the weight of an attention layer to fit into TRT-LLM.
|
|
The reordered weight and bias will be
|
|
weight: (T, Qh * D + 2 * KVh * D, H)
|
|
bias : (T, Qh * D + 2 * KVh * D)
|
|
where T=tp_size, Qh=local_num_q_heads, KVh=local_num_kv_heads, D=head_dim,
|
|
H=hidden_dim. In the multi/grouped query attention, the number of K/V
|
|
attention heads are less than that of Q attention, so that K/V attention
|
|
heads may be shared across different ranks if necessary.
|
|
|
|
For tensor parallelism, we use the first dimension to select the
|
|
corresponding weights.
|
|
"""
|
|
|
|
# Query types and expected kv heads.
|
|
# - Conventional MHA: num_heads = num_kv_heads
|
|
# - Multi-Query Attention: num_kv_heads = 1
|
|
# - Grouped-Query Attention: num_heads % num_kv_heads = 0
|
|
num_kv_heads = num_kv_heads if num_kv_heads is not None else num_heads
|
|
assert num_heads % num_kv_heads == 0, \
|
|
f'num_heads({num_heads}) must be divisible by '\
|
|
f'num_kv_heads({num_kv_heads})).'
|
|
|
|
# The number of attention heads per group: N q head + 1 k head + 1 v head.
|
|
num_group_heads = num_heads // num_kv_heads + 2
|
|
assert weight.shape[0] == num_kv_heads * num_group_heads * head_dim, \
|
|
f'{weight.shape[0]} != {num_kv_heads} * {num_group_heads} * {head_dim}'
|
|
|
|
qkv_in = num_heads * head_dim if not is_bias else 1
|
|
|
|
# Split Q/K/V weights
|
|
weight = weight.reshape(num_kv_heads, num_heads // num_kv_heads + 2,
|
|
head_dim, qkv_in)
|
|
q_w = weight[:, :-2, ...] # (nKV, num_heads // nKV, head_dim, qkv_in)
|
|
k_w = weight[:, -2:-1, ...] # (nKV, 1, head_dim, qkv_in)
|
|
v_w = weight[:, -1:, ...] # (nKV, 1, head_dim, qkv_in)
|
|
|
|
if num_kv_heads < num_heads and num_kv_heads < tp_size:
|
|
# Duplicate K/V heads to make sure that each rank has at least one
|
|
# K/V heads. For instance, num_heads=8, num_kv_heads=2, tp_size=4,
|
|
# we will make the qkv weight as below.
|
|
# Orig: [q0 q1 q2 q3 k0 v0 q4 q5 q6 q7 k1 v0 v1]
|
|
# >>>> [[q0 q1 k0 v0], [q2 q3 k0 v0], [q4 q5 k1 v1], [q6 q7 k1 v1]]
|
|
assert tp_size % num_kv_heads == 0
|
|
num_dups = tp_size // num_kv_heads
|
|
|
|
# k_w and v_w have the same shape.
|
|
new_shape = (num_kv_heads, num_dups) + k_w.shape[2:]
|
|
k_w = torch.broadcast_to(k_w, size=new_shape)
|
|
v_w = torch.broadcast_to(v_w, size=new_shape)
|
|
|
|
# Update the number of kv heads.
|
|
num_kv_heads = tp_size
|
|
|
|
reordered = torch.concat(
|
|
[
|
|
q_w.reshape(tp_size, num_heads // tp_size, head_dim, qkv_in),
|
|
k_w.reshape(tp_size, num_kv_heads // tp_size, head_dim, qkv_in),
|
|
v_w.reshape(tp_size, num_kv_heads // tp_size, head_dim, qkv_in),
|
|
],
|
|
dim=1,
|
|
)
|
|
|
|
qkv_out = (num_heads + 2 * num_kv_heads) // tp_size * head_dim
|
|
return reordered.reshape((tp_size, qkv_out, -1))
|
|
|
|
|
|
def split_qkv_weight(weight: torch.Tensor,
|
|
hidden_size: int,
|
|
num_heads: int,
|
|
tp_size: int,
|
|
rank: int,
|
|
is_bias: bool,
|
|
num_kv_heads: Optional[int] = None) -> torch.Tensor:
|
|
""" Splits the QKV matrix according to tensor parallelism """
|
|
head_dim = hidden_size // num_heads
|
|
weight = reorder_qkv_weight_or_bias(weight,
|
|
head_dim=head_dim,
|
|
num_heads=num_heads,
|
|
num_kv_heads=num_kv_heads,
|
|
tp_size=tp_size,
|
|
is_bias=is_bias)
|
|
|
|
# Copy a sliced tensor to prevent memory leak. A sliced tensor shares the
|
|
# memory buffer of the original tensor. So, returning without copying makes
|
|
# the buffer of a loaded "qkv" be referenced, resulting GC can't release
|
|
# those weights until the whole process ends.
|
|
if not is_bias:
|
|
return weight[rank, ...].clone()
|
|
else:
|
|
return weight[rank, ...].ravel().clone()
|
|
|
|
|
|
def split_matrix(weight: torch.Tensor, tp_size: int, rank: int,
|
|
dim: int) -> torch.Tensor:
|
|
return split(weight, tp_size, rank, dim=dim)
|
|
|
|
|
|
def get_weight(params: Dict[str, torch.Tensor], prefix: str,
|
|
dtype: torch.dtype) -> torch.Tensor:
|
|
if f'{prefix}.weight' not in params:
|
|
return None
|
|
return params[f'{prefix}.weight'].to(dtype).detach().cpu()
|
|
|
|
|
|
def get_bias(params: Dict[str, torch.Tensor], prefix: str,
|
|
dtype: torch.dtype) -> torch.Tensor:
|
|
if f'{prefix}.bias' not in params:
|
|
return None
|
|
return params[f'{prefix}.bias'].to(dtype).detach().cpu()
|
|
|
|
|
|
def get_weight_and_bias(params: Dict[str, torch.Tensor], prefix: str,
|
|
dtype: torch.dtype) -> Tuple[torch.Tensor]:
|
|
return get_weight(params, prefix, dtype), get_bias(params, prefix, dtype)
|
|
|
|
|
|
def get_tllm_linear_weight(
|
|
weight: torch.Tensor,
|
|
prefix: str,
|
|
bias: Optional[torch.Tensor] = None,
|
|
use_weight_only: bool = False,
|
|
plugin_weight_only_quant_type: torch.dtype = torch.int8
|
|
) -> Dict[str, torch.Tensor]:
|
|
results = {}
|
|
if use_weight_only:
|
|
v = weight.t().contiguous()
|
|
processed_torch_weights, torch_weight_scales = \
|
|
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
|
v, plugin_weight_only_quant_type)
|
|
results[f'{prefix}.weight'] = processed_torch_weights
|
|
results[f'{prefix}.per_channel_scale'] = torch_weight_scales
|
|
else:
|
|
results[f'{prefix}.weight'] = weight
|
|
|
|
if bias is not None:
|
|
results[f'{prefix}.bias'] = bias
|
|
|
|
return results
|
|
|
|
|
|
def get_tllm_param(
|
|
param: torch.Tensor,
|
|
name: str,
|
|
use_weight_only: bool = False,
|
|
plugin_weight_only_quant_type: torch.dtype = torch.int8
|
|
) -> Dict[str, torch.Tensor]:
|
|
results = {}
|
|
if name.endswith('.weight') and use_weight_only:
|
|
v = param.t().contiguous()
|
|
processed_torch_weights, torch_weight_scales = \
|
|
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
|
v, plugin_weight_only_quant_type)
|
|
results[name] = processed_torch_weights
|
|
results[name.replace('weight',
|
|
'per_channel_scale')] = torch_weight_scales
|
|
else:
|
|
results[name] = param
|
|
|
|
return results
|
|
|
|
|
|
def convert_hf_falcon(hf_model: FalconForCausalLM,
|
|
hf_config: FalconConfig,
|
|
mapping: Mapping,
|
|
dtype: str = 'float32',
|
|
use_parallel_embedding: bool = False,
|
|
sharding_dim: int = 0,
|
|
share_embedding_table: bool = False,
|
|
use_weight_only: bool = False,
|
|
plugin_weight_only_quant_type: torch.dtype = torch.int8):
|
|
weights = {}
|
|
tik = time.time()
|
|
|
|
model_params = dict(hf_model.named_parameters())
|
|
dtype = getattr(torch, dtype)
|
|
num_attention_heads = hf_config.num_attention_heads
|
|
hidden_size = hf_config.hidden_size
|
|
vocab_size = hf_config.vocab_size
|
|
num_kv_heads = getattr(hf_config, 'num_kv_heads', num_attention_heads)
|
|
num_hidden_layers = hf_config.num_hidden_layers
|
|
parallel_attention = hf_config.parallel_attn
|
|
new_decoder_architecture = hf_config.new_decoder_architecture
|
|
|
|
layers_range = mapping.pp_layers(num_hidden_layers)
|
|
for l in layers_range:
|
|
prefix = f'transformer.h.{l}'
|
|
tllm_prex = f'transformer.layers.{l-layers_range[0]}'
|
|
qkv_weight, qkv_bias = get_weight_and_bias(
|
|
model_params, f'{prefix}.self_attention.query_key_value', dtype)
|
|
qkv_w = split_qkv_weight(qkv_weight,
|
|
hidden_size,
|
|
num_attention_heads,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
is_bias=False,
|
|
num_kv_heads=num_kv_heads)
|
|
if qkv_bias is None:
|
|
qkv_b = None
|
|
else:
|
|
qkv_b = split_qkv_weight(qkv_bias,
|
|
hidden_size,
|
|
num_attention_heads,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
is_bias=True,
|
|
num_kv_heads=num_kv_heads)
|
|
weights.update(
|
|
get_tllm_linear_weight(qkv_w, f'{tllm_prex}.attention.qkv', qkv_b,
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type))
|
|
|
|
attn_dense_weight, attn_dense_bias = get_weight_and_bias(
|
|
model_params, f'{prefix}.self_attention.dense', dtype)
|
|
attn_dense_w = split_matrix(attn_dense_weight,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=1)
|
|
weights.update(
|
|
get_tllm_linear_weight(attn_dense_w, f'{tllm_prex}.attention.dense',
|
|
attn_dense_bias, use_weight_only,
|
|
plugin_weight_only_quant_type))
|
|
|
|
mlp_fc_weight, mlp_fc_bias = get_weight_and_bias(
|
|
model_params, f'{prefix}.mlp.dense_h_to_4h', dtype)
|
|
mlp_fc_w = split_matrix(mlp_fc_weight,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=0)
|
|
if mlp_fc_bias is None:
|
|
mlp_fc_b = None
|
|
else:
|
|
mlp_fc_b = split_matrix(mlp_fc_bias,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=0)
|
|
weights.update(
|
|
get_tllm_linear_weight(mlp_fc_w, f'{tllm_prex}.mlp.fc', mlp_fc_b,
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type))
|
|
|
|
mlp_proj_weight, mlp_proj_bias = get_weight_and_bias(
|
|
model_params, f'{prefix}.mlp.dense_4h_to_h', dtype)
|
|
mlp_proj_w = split_matrix(mlp_proj_weight,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=1)
|
|
weights.update(
|
|
get_tllm_linear_weight(mlp_proj_w, f'{tllm_prex}.mlp.proj',
|
|
mlp_proj_bias, use_weight_only,
|
|
plugin_weight_only_quant_type))
|
|
|
|
if new_decoder_architecture:
|
|
input_ln_weight, input_ln_bias = get_weight_and_bias(
|
|
model_params, f'{prefix}.ln_attn', dtype)
|
|
weights[f'{tllm_prex}.input_layernorm.weight'] = input_ln_weight
|
|
if input_ln_bias is not None:
|
|
weights[f'{tllm_prex}.input_layernorm.bias'] = input_ln_bias
|
|
|
|
mlp_ln_weight, mlp_ln_bias = get_weight_and_bias(
|
|
model_params, f'{prefix}.ln_mlp', dtype)
|
|
weights[f'{tllm_prex}.mlp_layernorm.weight'] = mlp_ln_weight
|
|
if mlp_ln_bias is not None:
|
|
weights[f'{tllm_prex}.mlp_layernorm.bias'] = mlp_ln_bias
|
|
else:
|
|
input_ln_weight, input_ln_bias = get_weight_and_bias(
|
|
model_params, f'{prefix}.input_layernorm', dtype)
|
|
weights[f'{tllm_prex}.input_layernorm.weight'] = input_ln_weight
|
|
if input_ln_bias is not None:
|
|
weights[f'{tllm_prex}.input_layernorm.bias'] = input_ln_bias
|
|
|
|
if not parallel_attention:
|
|
post_ln_weight, post_ln_bias = get_weight_and_bias(
|
|
model_params, f'{prefix}.post_attention_layernorm', dtype)
|
|
if post_ln_weight is not None:
|
|
weights[
|
|
f'{tllm_prex}.post_layernorm.weight'] = post_ln_weight
|
|
if post_ln_bias is not None:
|
|
weights[f'{tllm_prex}.post_layernorm.bias'] = post_ln_bias
|
|
|
|
embed_w = get_weight(model_params, 'transformer.word_embeddings', dtype)
|
|
if mapping.is_first_pp_rank():
|
|
if not use_parallel_embedding:
|
|
weights['transformer.vocab_embedding.weight'] = embed_w
|
|
else:
|
|
if sharding_dim == 0:
|
|
assert vocab_size % mapping.tp_size == 0
|
|
else:
|
|
assert hidden_size % mapping.tp_size == 0
|
|
weights['transformer.vocab_embedding.weight'] = split_matrix(
|
|
embed_w, mapping.tp_size, mapping.tp_rank, sharding_dim)
|
|
|
|
if mapping.is_last_pp_rank():
|
|
if not share_embedding_table:
|
|
weights['lm_head.weight'] = split_matrix(embed_w.clone(),
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=0)
|
|
ln_f_w, ln_f_b = get_weight_and_bias(model_params, 'transformer.ln_f',
|
|
dtype)
|
|
weights['transformer.ln_f.weight'] = ln_f_w
|
|
if ln_f_b is not None:
|
|
weights['transformer.ln_f.bias'] = ln_f_b
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
print(f'Weights loaded. Total time: {t}')
|
|
return weights
|
|
|
|
|
|
def load_from_hf_falcon_checkpoint(
|
|
hf_model_dir: str,
|
|
hf_config: FalconConfig,
|
|
mapping: Mapping,
|
|
dtype: str = 'float32',
|
|
use_parallel_embedding: bool = False,
|
|
sharding_dim: int = 0,
|
|
share_embedding_table: bool = False,
|
|
use_weight_only: bool = False,
|
|
plugin_weight_only_quant_type: torch.dtype = torch.int8):
|
|
|
|
weights = {}
|
|
tik = time.time()
|
|
|
|
dtype = getattr(torch, dtype)
|
|
num_attention_heads = hf_config.num_attention_heads
|
|
hidden_size = hf_config.hidden_size
|
|
vocab_size = hf_config.vocab_size
|
|
num_kv_heads = getattr(hf_config, 'num_kv_heads', num_attention_heads)
|
|
num_hidden_layers = hf_config.num_hidden_layers
|
|
|
|
layers_range = mapping.pp_layers(num_hidden_layers)
|
|
for model_file in iterate_shard_files(hf_model_dir, mapping.tp_rank):
|
|
state_dict = load_state_dict(model_file, dtype)
|
|
for name, param in state_dict.items():
|
|
l = retrieved_layer_index_from_name(name)
|
|
if l is not None:
|
|
if l not in layers_range:
|
|
continue
|
|
prefix = f'transformer.layers.{l-layers_range[0]}'
|
|
|
|
if 'self_attention.query_key_value' in name:
|
|
if name.endswith('weight'):
|
|
qkv_w = split_qkv_weight(param,
|
|
hidden_size,
|
|
num_attention_heads,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
is_bias=False,
|
|
num_kv_heads=num_kv_heads)
|
|
weights.update(
|
|
get_tllm_param(qkv_w,
|
|
f'{prefix}.attention.qkv.weight',
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type))
|
|
else:
|
|
qkv_b = split_qkv_weight(param,
|
|
hidden_size,
|
|
num_attention_heads,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
is_bias=True,
|
|
num_kv_heads=num_kv_heads)
|
|
weights.update(
|
|
get_tllm_param(qkv_b,
|
|
f'{prefix}.attention.qkv.bias',
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type))
|
|
|
|
elif 'self_attention.dense' in name:
|
|
if name.endswith('weight'):
|
|
attn_dense_w = split_matrix(param,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=1)
|
|
weights.update(
|
|
get_tllm_param(attn_dense_w,
|
|
f'{prefix}.attention.dense.weight',
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type))
|
|
else:
|
|
weights.update(
|
|
get_tllm_param(param,
|
|
f'{prefix}.attention.dense.bias',
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type))
|
|
|
|
elif 'mlp.dense_h_to_4h' in name:
|
|
if name.endswith('weight'):
|
|
mlp_fc_w = split_matrix(param,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=0)
|
|
weights.update(
|
|
get_tllm_param(mlp_fc_w, f'{prefix}.mlp.fc.weight',
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type))
|
|
else:
|
|
mlp_fc_b = split_matrix(param,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=0)
|
|
weights.update(
|
|
get_tllm_param(mlp_fc_b, f'{prefix}.mlp.fc.bias',
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type))
|
|
|
|
elif 'mlp.dense_4h_to_h' in name:
|
|
if name.endswith('weight'):
|
|
mlp_proj_w = split_matrix(param,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=1)
|
|
weights.update(
|
|
get_tllm_param(mlp_proj_w,
|
|
f'{prefix}.mlp.proj.weight',
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type))
|
|
else:
|
|
weights.update(
|
|
get_tllm_param(param, f'{prefix}.mlp.proj.bias',
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type))
|
|
|
|
elif 'ln_attn' in name or 'input_layernorm' in name:
|
|
if name.endswith('weight'):
|
|
weights[f'{prefix}.input_layernorm.weight'] = param
|
|
else:
|
|
weights[f'{prefix}.input_layernorm.bias'] = param
|
|
elif 'ln_mlp' in name:
|
|
if name.endswith('weight'):
|
|
weights[f'{prefix}.mlp_layernorm.weight'] = param
|
|
else:
|
|
weights[f'{prefix}.mlp_layernorm.bias'] = param
|
|
elif 'post_attention_layernorm' in name:
|
|
if name.endswith('weight'):
|
|
weights[f'{prefix}.post_layernorm.weight'] = param
|
|
else:
|
|
weights[f'{prefix}.post_layernorm.bias'] = param
|
|
elif 'word_embeddings' in name:
|
|
if mapping.is_first_pp_rank():
|
|
if not use_parallel_embedding:
|
|
weights['transformer.vocab_embedding.weight'] = param
|
|
else:
|
|
if sharding_dim == 0:
|
|
assert vocab_size % mapping.tp_size == 0
|
|
else:
|
|
assert hidden_size % mapping.tp_size == 0
|
|
weights[
|
|
'transformer.vocab_embedding.weight'] = split_matrix(
|
|
param, mapping.tp_size, mapping.tp_rank,
|
|
sharding_dim)
|
|
if mapping.is_last_pp_rank() and not share_embedding_table:
|
|
weights['lm_head.weight'] = split_matrix(param,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=0)
|
|
elif 'ln_f' in name:
|
|
if mapping.is_last_pp_rank():
|
|
if name.endswith('weight'):
|
|
weights['transformer.ln_f.weight'] = param
|
|
else:
|
|
weights['transformer.ln_f.bias'] = param
|
|
del state_dict
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
print(f'Weights loaded. Total time: {t}')
|
|
return weights
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# TODO(qijun): Currently, the convert script depends on a torch op:
|
|
# torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix,
|
|
# which is included in tensorrt_llm Python package. Otherwise, the convert
|
|
# script does not need to import tensorrt_llm. Will remove it after reimplementing
|
|
# the op with PyTorch.
|
|
print(tensorrt_llm.__version__)
|
|
args = parse_arguments()
|
|
world_size = args.tp_size * args.pp_size
|
|
|
|
tik = time.time()
|
|
|
|
if not os.path.exists(args.output_dir):
|
|
os.makedirs(args.output_dir)
|
|
|
|
quant_algo = None
|
|
plugin_weight_only_quant_type = None
|
|
if args.use_weight_only and args.weight_only_precision == 'int8':
|
|
plugin_weight_only_quant_type = torch.int8
|
|
quant_algo = QuantAlgo.W8A16
|
|
elif args.use_weight_only and args.weight_only_precision == 'int4':
|
|
plugin_weight_only_quant_type = torch.quint4x2
|
|
quant_algo = QuantAlgo.W4A16
|
|
|
|
hf_config = load_falcon_config(args.model_dir)
|
|
config = {
|
|
'architecture': hf_config.architectures[0],
|
|
'dtype': args.dtype,
|
|
'num_hidden_layers': hf_config.num_hidden_layers,
|
|
'num_attention_heads': hf_config.num_attention_heads,
|
|
'num_key_value_heads': hf_config.num_kv_heads,
|
|
'hidden_size': hf_config.hidden_size,
|
|
'norm_epsilon': hf_config.layer_norm_epsilon,
|
|
'vocab_size': hf_config.vocab_size,
|
|
'position_embedding_type':
|
|
'alibi_with_scale' if hf_config.alibi else 'rope_gpt_neox',
|
|
'max_position_embeddings': hf_config.max_position_embeddings,
|
|
'hidden_act': 'gelu',
|
|
'use_parallel_embedding': args.use_parallel_embedding,
|
|
'embedding_sharding_dim': args.embedding_sharding_dim,
|
|
'share_embedding_table': args.use_embedding_sharing,
|
|
'quantization': {
|
|
'quant_algo': quant_algo,
|
|
},
|
|
'mapping': {
|
|
'world_size': world_size,
|
|
'tp_size': args.tp_size,
|
|
'pp_size': args.pp_size,
|
|
},
|
|
'bias': hf_config.bias,
|
|
'parallel_attention': hf_config.parallel_attn,
|
|
'new_decoder_architecture': hf_config.new_decoder_architecture,
|
|
}
|
|
|
|
with open(os.path.join(args.output_dir, 'config.json'), 'w') as f:
|
|
json.dump(config, f, indent=4)
|
|
|
|
def covert_and_save(rank):
|
|
mapping = Mapping(world_size=world_size,
|
|
rank=rank,
|
|
tp_size=args.tp_size,
|
|
pp_size=args.pp_size)
|
|
|
|
if args.load_by_shard:
|
|
weights = load_from_hf_falcon_checkpoint(
|
|
args.model_dir,
|
|
hf_config,
|
|
mapping,
|
|
dtype=args.dtype,
|
|
use_parallel_embedding=args.use_parallel_embedding,
|
|
sharding_dim=args.embedding_sharding_dim,
|
|
share_embedding_table=args.use_embedding_sharing,
|
|
use_weight_only=args.use_weight_only,
|
|
plugin_weight_only_quant_type=plugin_weight_only_quant_type)
|
|
else:
|
|
hf_model = AutoModelForCausalLM.from_pretrained(
|
|
args.model_dir, trust_remote_code=True, torch_dtype="auto")
|
|
weights = convert_hf_falcon(
|
|
hf_model,
|
|
hf_config,
|
|
mapping,
|
|
dtype=args.dtype,
|
|
use_parallel_embedding=args.use_parallel_embedding,
|
|
sharding_dim=args.embedding_sharding_dim,
|
|
share_embedding_table=args.use_embedding_sharing,
|
|
use_weight_only=args.use_weight_only,
|
|
plugin_weight_only_quant_type=plugin_weight_only_quant_type)
|
|
del hf_model
|
|
|
|
safetensors.torch.save_file(
|
|
weights, os.path.join(args.output_dir, f'rank{rank}.safetensors'))
|
|
|
|
if args.workers == 1:
|
|
for rank in range(world_size):
|
|
covert_and_save(rank)
|
|
else:
|
|
with ThreadPoolExecutor(max_workers=args.workers) as p:
|
|
futures = [
|
|
p.submit(covert_and_save, rank) for rank in range(world_size)
|
|
]
|
|
exceptions = []
|
|
for future in as_completed(futures):
|
|
try:
|
|
future.result()
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
exceptions.append(e)
|
|
assert len(
|
|
exceptions
|
|
) == 0, "Checkpoint conversion failed, please check error log."
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
print(f'Total time of converting checkpoints: {t}')
|