mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Timur Abishev <abishev.timur@gmail.com> Co-authored-by: MahmoudAshraf97 <hassouna97.ma@gmail.com> Co-authored-by: Saeyoon Oh <saeyoon.oh@furiosa.ai> Co-authored-by: hattizai <hattizai@gmail.com>
361 lines
14 KiB
Python
361 lines
14 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import Optional, Union
|
|
|
|
from tensorrt_llm.lora_manager import LoraConfig, use_lora
|
|
|
|
from ..._utils import pad_vocab_size
|
|
from ...functional import Tensor, recv, send, sigmoid
|
|
from ...layers import (MLP, MOE, Attention, AttentionMaskType, ColumnLinear,
|
|
Embedding, GatedMLP, RmsNorm, RowLinear)
|
|
from ...mapping import Mapping
|
|
from ...module import Module
|
|
from ...quantization import W8A8_SQ_PLUGIN_LIST, QuantAlgo
|
|
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
|
|
QuantConfig, check_share_embedding)
|
|
from .config import QWenConfig
|
|
from .convert import (load_hf_qwen, load_weights_from_hf_gptq_model,
|
|
load_weights_from_hf_model)
|
|
|
|
|
|
class QWenDecoderLayer(Module):
|
|
|
|
def __init__(self, config: QWenConfig, layer_idx: int):
|
|
super().__init__()
|
|
self.layer_idx = layer_idx
|
|
self.config = config
|
|
|
|
dtype = config.dtype
|
|
tp_group = config.mapping.tp_group
|
|
tp_size = config.mapping.tp_size
|
|
|
|
self.input_layernorm = RmsNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=dtype)
|
|
|
|
layers_range = config.mapping.pp_layers(config.num_hidden_layers)
|
|
local_layer_idx = layer_idx - layers_range[0]
|
|
self.attention = Attention(
|
|
local_layer_idx=local_layer_idx,
|
|
hidden_size=config.hidden_size,
|
|
attention_head_size=config.head_size,
|
|
num_attention_heads=config.num_attention_heads,
|
|
num_kv_heads=config.num_key_value_heads,
|
|
max_position_embeddings=config.max_position_embeddings,
|
|
dtype=dtype,
|
|
attention_mask_type=AttentionMaskType.causal,
|
|
bias=config.attn_bias,
|
|
position_embedding_type=config.position_embedding_type,
|
|
rotary_embedding_base=config.rotary_base,
|
|
rotary_embedding_scaling=config.rotary_scaling,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
quant_mode=config.quant_mode,
|
|
dense_bias=False)
|
|
|
|
ClsMLP = GatedMLP
|
|
mlp_kwargs = {}
|
|
if config.moe.has_moe():
|
|
ClsMLP = MOE
|
|
mlp_kwargs = {
|
|
"moe_config": config.moe,
|
|
"mapping": config.mapping,
|
|
}
|
|
|
|
if config.qwen_type == 'qwen2_moe':
|
|
self.shared_expert = MLP(
|
|
hidden_size=config.hidden_size,
|
|
ffn_hidden_size=config.moe_shared_expert_intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
dtype=dtype,
|
|
bias=False,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
quant_mode=config.quant_mode)
|
|
self.shared_expert_gate = RowLinear(config.hidden_size,
|
|
1,
|
|
bias=False,
|
|
dtype=dtype,
|
|
tp_group=None,
|
|
tp_size=1)
|
|
|
|
# Qwen's real inter_size depends on qwen_type
|
|
if self.config.qwen_type == 'qwen':
|
|
intermediate_size = config.intermediate_size // 2
|
|
elif self.config.qwen_type == 'qwen2_moe':
|
|
intermediate_size = config.moe_intermediate_size
|
|
else:
|
|
intermediate_size = config.intermediate_size
|
|
|
|
self.mlp = ClsMLP(hidden_size=config.hidden_size,
|
|
ffn_hidden_size=intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
dtype=dtype,
|
|
bias=config.mlp_bias,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
quant_mode=config.quant_mode,
|
|
**mlp_kwargs)
|
|
self.post_layernorm = RmsNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=dtype)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: Tensor,
|
|
attention_mask=None,
|
|
use_cache=False,
|
|
kv_cache_params=None,
|
|
attention_params=None,
|
|
lora_layer_params=None,
|
|
):
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
attention_output = self.attention(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
use_cache=use_cache,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params,
|
|
lora_layer_params=lora_layer_params,
|
|
)
|
|
if use_cache:
|
|
attention_output, presents = attention_output
|
|
|
|
hidden_states = residual + attention_output
|
|
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.post_layernorm(hidden_states)
|
|
|
|
shared_output = None
|
|
if self.config.qwen_type == 'qwen2_moe':
|
|
shared_output = self.shared_expert(hidden_states)
|
|
if self.shared_expert_gate is not None:
|
|
shared_output = sigmoid(
|
|
self.shared_expert_gate(hidden_states)) * shared_output
|
|
|
|
hidden_states = self.mlp(hidden_states,
|
|
lora_layer_params=lora_layer_params)
|
|
|
|
if shared_output is not None:
|
|
hidden_states = hidden_states + shared_output
|
|
|
|
hidden_states = residual + hidden_states
|
|
if use_cache:
|
|
return (hidden_states, presents)
|
|
return hidden_states
|
|
|
|
|
|
class QWenModel(Module):
|
|
|
|
def __init__(self, config: QWenConfig) -> None:
|
|
super().__init__()
|
|
self.mapping = config.mapping
|
|
if self.mapping.is_first_pp_rank():
|
|
self.vocab_embedding = Embedding(config.vocab_size,
|
|
config.hidden_size,
|
|
dtype=config.dtype)
|
|
|
|
self.layers = DecoderLayerList(QWenDecoderLayer, config)
|
|
|
|
if self.mapping.is_last_pp_rank():
|
|
self.ln_f = RmsNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=config.dtype)
|
|
|
|
def forward(self,
|
|
input_ids: Tensor,
|
|
position_ids=None,
|
|
use_cache=False,
|
|
attention_mask=None,
|
|
kv_cache_params=None,
|
|
attention_params=None,
|
|
hidden_states=None,
|
|
prompt_embedding_table: Optional[Tensor] = None,
|
|
prompt_tasks: Optional[Tensor] = None,
|
|
prompt_vocab_size: Optional[Tensor] = None,
|
|
lora_params=None):
|
|
|
|
ptuning_args = [
|
|
prompt_embedding_table, prompt_tasks, prompt_vocab_size
|
|
] if prompt_embedding_table is not None else []
|
|
|
|
if self.mapping.is_first_pp_rank():
|
|
hidden_states = self.vocab_embedding(input_ids, *ptuning_args)
|
|
else:
|
|
hidden_states = recv(hidden_states, self.mapping.prev_pp_rank())
|
|
|
|
hidden_states = self.layers.forward(hidden_states,
|
|
use_cache=use_cache,
|
|
attention_mask=attention_mask,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params,
|
|
lora_params=lora_params)
|
|
|
|
if use_cache:
|
|
hidden_states, presents = hidden_states
|
|
|
|
if self.mapping.is_last_pp_rank():
|
|
hidden_states = self.ln_f(hidden_states)
|
|
else:
|
|
hidden_states = send(hidden_states, self.mapping.next_pp_rank())
|
|
|
|
if use_cache:
|
|
return (hidden_states, tuple(presents))
|
|
return hidden_states
|
|
|
|
|
|
class QWenForCausalLM(DecoderModelForCausalLM):
|
|
config_class = QWenConfig
|
|
|
|
def __init__(self, config: QWenConfig):
|
|
transformer = QWenModel(config)
|
|
vocab_size_padded = pad_vocab_size(config.vocab_size,
|
|
config.mapping.tp_size)
|
|
|
|
if config.mapping.is_last_pp_rank():
|
|
lm_head = ColumnLinear(config.hidden_size,
|
|
vocab_size_padded,
|
|
bias=False,
|
|
dtype=config.dtype,
|
|
tp_group=config.mapping.tp_group,
|
|
tp_size=config.mapping.tp_size,
|
|
gather_output=True)
|
|
else:
|
|
lm_head = None
|
|
self.quant_mode = config.quant_mode
|
|
self.mapping = config.mapping
|
|
if config.qwen_type == 'qwen':
|
|
self.trtllm_modules_to_hf_modules = {
|
|
"attn_qkv": "c_attn",
|
|
"attn_dense": "attn.c_proj",
|
|
"mlp_h_to_4h": "w2",
|
|
"mlp_4h_to_h": "mlp.c_proj",
|
|
"mlp_gate": "w1",
|
|
}
|
|
else:
|
|
self.trtllm_modules_to_hf_modules = None
|
|
super().__init__(config, transformer, lm_head)
|
|
|
|
@classmethod
|
|
def from_hugging_face(
|
|
cls,
|
|
hf_model_or_dir: Union[str, 'transformers.PreTrainedModel'],
|
|
dtype: str = 'auto',
|
|
mapping: Optional[Mapping] = None,
|
|
quant_config: Optional[QuantConfig] = None,
|
|
use_hf_gptq_checkpoint=False,
|
|
**kwargs):
|
|
''' Create a QWenForCausalLM object from give parameters
|
|
'''
|
|
import transformers
|
|
|
|
load_model_on_cpu = kwargs.pop('load_model_on_cpu', False)
|
|
|
|
assert hf_model_or_dir is not None
|
|
use_preloading = isinstance(hf_model_or_dir,
|
|
transformers.PreTrainedModel)
|
|
if use_preloading:
|
|
hf_model = hf_model_or_dir
|
|
hf_config_or_dir = hf_model.config
|
|
else:
|
|
hf_model_dir = hf_model_or_dir
|
|
hf_config_or_dir = hf_model_or_dir
|
|
|
|
config = QWenConfig.from_hugging_face(hf_config_or_dir,
|
|
dtype=dtype,
|
|
mapping=mapping,
|
|
quant_config=quant_config,
|
|
**kwargs)
|
|
|
|
if not use_preloading:
|
|
hf_model = load_hf_qwen(hf_model_dir, load_model_on_cpu)
|
|
if use_hf_gptq_checkpoint:
|
|
weights = load_weights_from_hf_gptq_model(hf_model, config)
|
|
else:
|
|
weights = load_weights_from_hf_model(hf_model, config)
|
|
|
|
check_share_embedding(weights, config)
|
|
model = QWenForCausalLM(config)
|
|
model.load(weights)
|
|
return model
|
|
|
|
def default_plugin_config(self, **kwargs):
|
|
plugin_config = super().default_plugin_config(**kwargs)
|
|
if self.quant_mode.is_int4_weight_only_per_group():
|
|
plugin_config.weight_only_groupwise_quant_matmul_plugin = 'auto'
|
|
return plugin_config
|
|
|
|
@classmethod
|
|
def quantize(
|
|
cls,
|
|
hf_model_dir: str,
|
|
output_dir: str,
|
|
dtype: str = 'auto',
|
|
mapping: Optional[Mapping] = None,
|
|
quant_config: Optional[QuantConfig] = None,
|
|
*,
|
|
calib_dataset='cnn_dailymail',
|
|
calib_batches=512,
|
|
calib_batch_size=1,
|
|
calib_max_seq_length=512,
|
|
random_seed=1234,
|
|
tokenizer_max_seq_length=2048,
|
|
**kwargs,
|
|
):
|
|
DEFAULT_MODELOPT_FLOW = [
|
|
QuantAlgo.W4A16_AWQ, QuantAlgo.FP8, QuantAlgo.W8A8_SQ_PER_CHANNEL,
|
|
QuantAlgo.W4A8_AWQ
|
|
]
|
|
config = QWenConfig.from_hugging_face(hf_model_dir,
|
|
dtype=dtype,
|
|
mapping=mapping,
|
|
quant_config=quant_config,
|
|
**kwargs)
|
|
|
|
if quant_config.quant_algo in DEFAULT_MODELOPT_FLOW:
|
|
super().quantize(hf_model_dir,
|
|
output_dir,
|
|
dtype=config.dtype,
|
|
mapping=config.mapping,
|
|
quant_config=config.quantization,
|
|
calib_dataset=calib_dataset,
|
|
calib_batches=calib_batches,
|
|
calib_batch_size=calib_batch_size,
|
|
calib_max_seq_length=calib_max_seq_length,
|
|
random_seed=random_seed,
|
|
tokenizer_max_seq_length=tokenizer_max_seq_length)
|
|
else:
|
|
# non-modelopt, the legacy TRT-LLM native quantization algorithm:
|
|
# sq, int4/int8 weights only, int8 kv cache
|
|
NATIVE_QUANT_FLOW = [QuantAlgo.W4A16, QuantAlgo.W8A16, None
|
|
] + W8A8_SQ_PLUGIN_LIST
|
|
is_valid_native_quant = (quant_config.quant_algo in NATIVE_QUANT_FLOW) and \
|
|
(quant_config.kv_cache_quant_algo in [QuantAlgo.INT8, None])
|
|
assert quant_config.quant_algo is not None or quant_config.kv_cache_quant_algo is not None, \
|
|
"There is no point to call the quantize function if both quant_algo and kv_cache_quant_algo is None"
|
|
assert is_valid_native_quant, f"Internal error: shall call Modelopt for this quantization {quant_config}"
|
|
|
|
from . import convert
|
|
convert.quantize(hf_model_dir,
|
|
output_dir,
|
|
config=config,
|
|
calib_dataset=calib_dataset)
|
|
|
|
def use_lora(self, lora_config: LoraConfig):
|
|
use_lora(self, lora_config, self.trtllm_modules_to_hf_modules)
|