TensorRT-LLMs/cpp/include/tensorrt_llm/runtime/iStatefulGptDecoder.h
2023-10-10 23:22:17 -07:00

113 lines
3.5 KiB
C++

/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/runtime/cudaStream.h"
#include "tensorrt_llm/runtime/generationInput.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include "tensorrt_llm/runtime/samplingConfig.h"
#include <cstdint>
#include <memory>
#include <utility>
#include <vector>
#include <NvInferRuntime.h>
namespace tensorrt_llm::runtime
{
namespace decoder
{
class Input
{
public:
using TensorPtr = std::shared_ptr<ITensor const>;
explicit Input(TensorPtr logits)
: logits{std::move(logits)}
{
TLLM_CHECK_WITH_INFO(static_cast<bool>(this->logits), "Invalid logits tensor");
}
// mandatory parameters
TensorPtr logits; // [batchSize, maxBeamWidth, vocabSizePadded], on gpu
// parameters for beam search
TensorPtr cacheIndirection; // [batchSize, maxBeamWidth, maxSeqLen] - the k/v cache index for beam search, on gpu
};
class Output
{
public:
using TensorPtr = std::shared_ptr<ITensor>;
Output() = default;
// parameters for beam search
TensorPtr cacheIndirection; // [batchSize, maxBeamWidth, maxSeqLen], mandatory in beam search, on gpu
TensorPtr sequenceLengths; // [batchSize, maxBeamWidth], mandatory, on gpu
};
} // namespace decoder
//! GPT decoder class with support for in-flight batching
class IStatefulGptDecoder
{
public:
using CudaStreamPtr = std::shared_ptr<CudaStream>;
using TensorPtr = std::shared_ptr<ITensor>;
//! Setup the decoder before calling `forward()`, also calls reshapeBuffers
virtual void setup(
SizeType maxBatchSize, SizeType maxBeamWidth, SizeType maxSequenceLength, nvinfer1::DataType dtype)
= 0;
//! @brief Initialize the decoder with new batch of inputs.
virtual void newBatch(GenerationInput const& inputs, SamplingConfig const& samplingConfig) = 0;
//! @brief Run one step for all requests without blocking the host thread.
virtual void forwardAsync(decoder::Output& output, decoder::Input const& input) = 0;
//! @brief Wait for the last call to `forwardAsync` to complete and return whether all sequences have finished.
virtual bool isFinishedSync() = 0;
//! @brief Run one step for all requests.
virtual bool forward(decoder::Output& output, decoder::Input const& input)
{
forwardAsync(output, input);
return isFinishedSync();
}
//! @brief Gather final results for all requests.
virtual TensorPtr getFinalOutputIds() const = 0;
//! @returns [batchSize, beamWidth, maxSequenceLength], all token ids, on gpu
virtual TensorPtr getOutputIds() const = 0;
//! @returns [batchSize, beamWidth], latests generated tokens (per beam), on gpu
virtual TensorPtr getNewTokens() const = 0;
//! @returns [1], number of finished sequences, in pinned host memory
virtual TensorPtr getNbFinished() const = 0;
protected:
IStatefulGptDecoder() = default;
};
} // namespace tensorrt_llm::runtime