TensorRT-LLMs/cpp/tensorrt_llm/kernels/decodingCommon.cu
石晓伟 548b5b7310
Update TensorRT-LLM (#2532)
* blossom-ci.yml: run vulnerability scan on blossom

* open source efb18c1256f8c9c3d47b7d0c740b83e5d5ebe0ec

---------

Co-authored-by: niukuo <6831097+niukuo@users.noreply.github.com>
Co-authored-by: pei0033 <59505847+pei0033@users.noreply.github.com>
Co-authored-by: Kyungmin Lee <30465912+lkm2835@users.noreply.github.com>
Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>
2024-12-04 21:16:56 +08:00

226 lines
8.5 KiB
Plaintext

/*
* Copyright (c) 2020-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/kernels/decodingCommon.h"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/reduceKernelUtils.cuh"
#include "tensorrt_llm/runtime/common.h"
#include <cstdint>
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::runtime;
namespace tensorrt_llm::kernels
{
__global__ void curandInitialize(curandState_t* state, int const* batchSlots, int const size, uint64_t const randomSeed)
{
int const idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < size)
{
auto const batchSlot = batchSlots != nullptr ? batchSlots[idx] : idx;
curand_init(randomSeed, 0, 0, &state[batchSlot]);
}
}
void invokeCurandInitialize(
curandState_t* state, int const* batchSlots, size_t const batchSize, uint64_t const randomSeed, cudaStream_t stream)
{
dim3 block(256);
dim3 grid((int) (ceil(batchSize * 1.0 / 256)));
curandInitialize<<<grid, block, 0, stream>>>(state, batchSlots, batchSize, randomSeed);
}
__global__ void curandBatchInitialize(
curandState_t* states, SizeType32 const* batchSlots, SizeType32 const size, uint64_t const* randomSeeds)
{
SizeType32 const bid = threadIdx.x + blockIdx.x * blockDim.x;
if (bid < size)
{
auto const batchSlot = batchSlots != nullptr ? batchSlots[bid] : bid;
curand_init(randomSeeds[bid], 0, 0, &states[batchSlot]);
}
}
void invokeCurandBatchInitialize(curandState_t* states, SizeType32 const* batchSlots, size_t const batchSize,
uint64_t const* randomSeeds, cudaStream_t stream)
{
dim3 block(256);
dim3 grid(static_cast<SizeType32>(ceil(batchSize * 1.0 / 256)));
curandBatchInitialize<<<grid, block, 0, stream>>>(states, batchSlots, batchSize, randomSeeds);
}
template <typename T>
__global__ void addBiasSoftMax(T* logits, T** logitsPtrs, T* probs, float* outputEntropy, T const* bias,
float const* temperatures, int32_t const* endIds, FinishedState const* finished, int32_t const* beamWidths,
int32_t const* batchSlots, int32_t maxBatchSize, int32_t maxBeamWidth, int32_t vocabSize, int32_t vocabSizePadded,
bool skipSoftMax, bool batchSlotsLogits, bool ptrsForBeams)
{
auto const batchIdx = blockIdx.x;
auto const beamIdx = blockIdx.y;
auto const batchSlot = batchSlots ? batchSlots[batchIdx] : batchIdx;
if (beamWidths && beamIdx >= beamWidths[batchSlot])
{
return;
}
auto const batchIdxLogits = batchSlotsLogits ? batchSlot : batchIdx;
FinishedState const finishState
= finished != nullptr ? finished[beamIdx * maxBatchSize + batchSlot] : FinishedState::empty();
if (finishState.isSkipDecoding())
{
return;
}
bool const finish = finishState.isFinished();
auto logitsPtr = logitsPtrs ? (ptrsForBeams ? logitsPtrs[batchIdx * maxBeamWidth + beamIdx]
: logitsPtrs[batchIdx] + beamIdx * vocabSizePadded)
: logits + (batchIdxLogits * maxBeamWidth + beamIdx) * vocabSizePadded;
T const MAX_T_VAL = (std::is_same<T, half>::value) ? HALF_FLT_MAX : FLT_MAX;
float const EPSILON = (std::is_same<T, half>::value) ? 1e-3f : 1e-6f;
float maxVal = -FLT_MAX;
__shared__ float sMaxVal, sSumVal;
auto const tempInv = temperatures ? T{1.f / (temperatures[batchSlot] + EPSILON)} : T{1.f};
for (int tid = threadIdx.x; tid < vocabSizePadded; tid += blockDim.x)
{
auto logit = logitsPtr[tid];
logit = temperatures ? logit * tempInv : logit;
if (tid < vocabSize)
{
if (finish && endIds != nullptr)
{
// Prefer token EOS if the request has finished
logit = (tid == endIds[batchSlot]) ? MAX_T_VAL : -MAX_T_VAL;
}
else
{
// Compute biased logit if the request has not finished, or `endIds` is nullptr
logit += (bias != nullptr) ? bias[tid] : T{0.0f};
}
}
else
{
logit = -MAX_T_VAL;
}
maxVal = max(maxVal, static_cast<float>(logit));
logitsPtr[tid] = logit; // Write back biased logits
}
if (!skipSoftMax)
{
maxVal = blockReduceMax<float>(static_cast<float>(maxVal));
if (threadIdx.x == 0)
{
sMaxVal = maxVal;
}
__syncthreads();
// `probs == nullptr` is specialization for Beam-Search, which needs log and writes output to`logitsPtrs`
float sumVal = 0.0f;
int const offset = (probs != nullptr) ? ((batchIdxLogits * maxBeamWidth + beamIdx) * vocabSizePadded) : 0;
T* dst = (probs != nullptr) ? probs : logitsPtr;
for (int tid = threadIdx.x; tid < vocabSizePadded; tid += blockDim.x)
{
auto const value = __expf(static_cast<float>(logitsPtr[tid]) - sMaxVal);
dst[offset + tid] = value;
sumVal += value;
}
sumVal = blockReduceSum<float>(sumVal);
if (threadIdx.x == 0)
{
sSumVal = sumVal;
}
__syncthreads();
float entropy{0.f};
for (int tid = threadIdx.x; tid < vocabSizePadded; tid += blockDim.x)
{
auto const softmaxValue = static_cast<float>(dst[offset + tid]) / (sSumVal + EPSILON);
auto const probValue = (probs != nullptr) ? softmaxValue : __logf(softmaxValue);
if (outputEntropy)
{
entropy += probValue * __logf(probValue + EPSILON);
}
dst[offset + tid] = probValue;
}
if (outputEntropy)
{
entropy = blockReduceSum<float>(entropy);
if (threadIdx.x == 0)
{
outputEntropy[batchSlot * maxBeamWidth + beamIdx] = -entropy;
}
}
}
}
template <typename T>
void invokeAddBiasSoftMax(BiasSoftmaxParams<T> const params, cudaStream_t stream)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
dim3 grid(params.batchSize, params.maxBeamWidth);
auto const vocabRoundedToWarp = roundUp(params.vocabSize, 32);
dim3 block(std::min(vocabRoundedToWarp, 1024)); // vocabSize is usually larger than 1024
addBiasSoftMax<<<grid, block, 0, stream>>>(params.logits, params.logitsPtrs, params.probs, params.outputEntropy,
params.bias, params.temperatures, params.endIds, params.finished, params.beamWidths, params.batchSlots,
params.maxBatchSize, params.maxBeamWidth, params.vocabSize, params.vocabSizePadded, params.skipSoftMax,
params.batchSlotsLogits, params.ptrsForBeams);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template void invokeAddBiasSoftMax(BiasSoftmaxParams<float> const params, cudaStream_t stream);
template void invokeAddBiasSoftMax(BiasSoftmaxParams<half> const params, cudaStream_t stream);
template <typename T>
__global__ void scatterDecodingParamsKernel(T const* src, T scalar, T* dst, int const* batchSlots, int batchSize)
{
auto const batchIdx = blockIdx.x * blockDim.x + threadIdx.x;
if (batchIdx >= batchSize)
{
return;
}
auto const batchSlot = batchSlots[batchIdx];
dst[batchSlot] = (src == nullptr ? scalar : src[batchIdx]);
}
template <typename T>
void invokeScatterDecodingParams(
T const* src, T scalar, T* dst, int const* batchSlots, int batchSize, cudaStream_t stream)
{
constexpr int THREADS_PER_CTA = 256;
dim3 grid(divUp(batchSize, THREADS_PER_CTA));
scatterDecodingParamsKernel<<<grid, THREADS_PER_CTA, 0, stream>>>(src, scalar, dst, batchSlots, batchSize);
}
template void invokeScatterDecodingParams(
float const* src, float scalar, float* dst, int const* batchSlots, int batchSize, cudaStream_t stream);
template void invokeScatterDecodingParams(
uint32_t const* src, uint32_t scalar, uint32_t* dst, int const* batchSlots, int batchSize, cudaStream_t stream);
template void invokeScatterDecodingParams(
int32_t const* src, int32_t scalar, int32_t* dst, int const* batchSlots, int batchSize, cudaStream_t stream);
} // namespace tensorrt_llm::kernels