TensorRT-LLMs/cpp/tensorrt_llm/runtime/eagleBuffers.cpp
2024-12-16 21:50:47 -08:00

508 lines
27 KiB
C++

/*
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/runtime/eagleBuffers.h"
#include "tensorrt_llm/batch_manager/llmRequest.h"
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/kernels/speculativeDecoding/eagleDecodingKernels.h"
#include "tensorrt_llm/kernels/speculativeDecoding/explicitDraftTokensKernels.h"
#include "tensorrt_llm/runtime/common.h"
#include "tensorrt_llm/runtime/iBuffer.h"
#include "tensorrt_llm/runtime/runtimeKernels.h"
namespace tksd = tensorrt_llm::kernels::speculative_decoding;
namespace tensorrt_llm::runtime
{
void EagleBuffers::Inputs::create(SizeType32 maxNumSequences, TllmRuntime const& runtime,
ModelConfig const& modelConfig, WorldConfig const& worldConfig)
{
auto const& manager = runtime.getBufferManager();
auto const& speculativeDecodingModule = modelConfig.getSpeculativeDecodingModule();
auto const maxNumPaths = speculativeDecodingModule.getMaxNumPaths();
auto const maxPathLen = speculativeDecodingModule.getMaxPathLen();
auto const maxDecodingTokens = speculativeDecodingModule.getMaxDecodingTokens();
auto const maxDecodingDraftTokens = speculativeDecodingModule.getMaxDecodingDraftTokens();
auto constexpr TRTTokenIdType = runtime::TRTDataType<runtime::TokenIdType>::value;
temperatures = manager.gpu(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kFLOAT);
randomDataSample = manager.gpu(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kFLOAT);
randomDataValidation
= manager.gpu(ITensor::makeShape({maxNumSequences, maxDecodingTokens}), nvinfer1::DataType::kFLOAT);
draftTokens = manager.gpu(ITensor::makeShape({maxNumSequences, maxDecodingDraftTokens}), TRTTokenIdType);
draftLens = manager.gpu(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
draftPaths
= manager.gpu(ITensor::makeShape({maxNumSequences, maxNumPaths, maxPathLen}), nvinfer1::DataType::kINT32);
specDecodingGenerationLengths = manager.gpu(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
specDecodingGenerationLengthsHost
= manager.pinnedPool(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
specDecodingPackedMasks
= manager.gpu(ITensor::makeShape({maxNumSequences, maxDecodingTokens, common::ceilDiv(maxDecodingTokens, 32)}),
nvinfer1::DataType::kINT32);
specDecodingPositionOffsets
= manager.gpu(ITensor::makeShape({maxNumSequences * maxDecodingTokens}), nvinfer1::DataType::kINT32);
eagleNetCtxRequestTypesHost = manager.pinnedPool(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
eagleNetCtxContextLengthsHost
= manager.pinnedPool(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
eagleNetCtxPastKeyValueLengthsHost
= manager.pinnedPool(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
eagleNetGenRequestTypesHost = manager.pinnedPool(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
eagleNetGenContextLengthsHost
= manager.pinnedPool(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
eagleNetGenPastKeyValueLengthsHost
= manager.pinnedPool(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
inputGenTokensHost
= manager.pinnedPool(ITensor::makeShape({maxNumSequences * maxDecodingTokens}), nvinfer1::DataType::kINT32);
chunkedContextNextTokens = manager.gpu(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
useSpecDecoding = manager.cpu(ITensor::makeShape({1}), nvinfer1::DataType::kINT32);
}
EagleBuffers::EagleBuffers(SizeType32 maxBatchSize, SizeType32 maxBeamWidth, runtime::BufferManager const& manager,
runtime::ModelConfig const& modelConfig, runtime::WorldConfig const& worldConfig,
executor::DecodingConfig const& decodingConfig, runtime::TllmRuntime const& runtime)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_CHECK_WITH_INFO(maxBeamWidth == 1, "EAGLE does not support beam search");
auto const maxNumSequences = maxBatchSize;
auto const eagleModule = std::dynamic_pointer_cast<tensorrt_llm::runtime::EagleModule const>(
modelConfig.getSpeculativeDecodingModulePtr());
auto const numPaths = eagleModule->getMaxNumPaths();
auto const pathLen = eagleModule->getMaxPathLen();
auto const maxDecodingDraftTokens = eagleModule->getMaxDecodingDraftTokens();
auto constexpr TRTTokenIdType = runtime::TRTDataType<runtime::TokenIdType>::value;
// input tensors
engineInputs.temperatures = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kFLOAT);
engineInputs.posteriorAlpha = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kFLOAT);
engineInputs.posteriorThreshold = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kFLOAT);
posteriorAlphaHost = manager.emptyTensor(runtime::MemoryType::kPINNEDPOOL, nvinfer1::DataType::kFLOAT);
posteriorThresholdHost = manager.emptyTensor(runtime::MemoryType::kPINNEDPOOL, nvinfer1::DataType::kFLOAT);
greedySamplingHost = manager.pinnedPool(ITensor::makeShape({1}), nvinfer1::DataType::kINT32);
engineInputs.draftTokens
= manager.gpu(ITensor::makeShape({maxNumSequences, maxDecodingDraftTokens}), TRTTokenIdType);
engineInputs.draftLens = manager.gpu(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
engineInputs.draftPaths
= manager.gpu(ITensor::makeShape({maxNumSequences, numPaths, pathLen}), nvinfer1::DataType::kINT32);
engineInputs.specDecodingGenerationLengths
= manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kINT32);
engineInputs.specDecodingPositionOffsets
= manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kINT32);
engineInputs.specDecodingPackedMasks = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kINT32);
engineInputs.randomDataSample = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kFLOAT);
engineInputs.randomDataValidation = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kFLOAT);
engineInputs.eagleNetCtxRequestTypesHost
= manager.emptyTensor(runtime::MemoryType::kPINNEDPOOL, nvinfer1::DataType::kINT32);
engineInputs.eagleNetCtxContextLengthsHost
= manager.emptyTensor(runtime::MemoryType::kPINNEDPOOL, nvinfer1::DataType::kINT32);
engineInputs.eagleNetCtxPastKeyValueLengthsHost
= manager.emptyTensor(runtime::MemoryType::kPINNEDPOOL, nvinfer1::DataType::kINT32);
engineInputs.eagleNetGenRequestTypesHost
= manager.emptyTensor(runtime::MemoryType::kPINNEDPOOL, nvinfer1::DataType::kINT32);
engineInputs.eagleNetGenContextLengthsHost
= manager.emptyTensor(runtime::MemoryType::kPINNEDPOOL, nvinfer1::DataType::kINT32);
engineInputs.eagleNetGenPastKeyValueLengthsHost
= manager.emptyTensor(runtime::MemoryType::kPINNEDPOOL, nvinfer1::DataType::kINT32);
engineInputs.inputGenTokensHost = manager.emptyTensor(runtime::MemoryType::kPINNEDPOOL, nvinfer1::DataType::kINT32);
engineInputs.chunkedContextNextTokens = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kINT32);
engineInputs.useSpecDecoding = manager.cpu(ITensor::makeShape({1}), nvinfer1::DataType::kINT32);
bufferCast<SizeType32>(*engineInputs.useSpecDecoding)[0] = 1;
chunkedContextNextTokensHost = manager.emptyTensor(runtime::MemoryType::kPINNEDPOOL, nvinfer1::DataType::kINT32);
// Eagle-2, not fully supported yet
engineInputs.useDynamicTreeHost = manager.cpu(ITensor::makeShape({1}), nvinfer1::DataType::kBOOL);
auto useDynamicTreeHostPtr = bufferCast<bool>(*(engineInputs.useDynamicTreeHost));
useDynamicTreeHostPtr[0] = 0;
// output tensors
engineOutputs.nextDraftTokens
= manager.gpu(ITensor::makeShape({maxNumSequences, numPaths, pathLen}), TRTTokenIdType);
engineOutputs.nextDraftLens = manager.gpu(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
engineOutputs.nextDraftPaths
= manager.gpu(ITensor::makeShape({maxNumSequences, numPaths, pathLen}), nvinfer1::DataType::kINT32);
engineOutputs.acceptedTokens
= manager.gpu(ITensor::makeShape({maxNumSequences, pathLen}), nvinfer1::DataType::kINT32);
engineOutputs.acceptedLens = manager.gpu(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
engineOutputs.acceptedPaths = manager.gpu(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
engineOutputs.chunkedContextNextTokens
= manager.gpu(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
// helper tensors
auto const& stream = manager.getStream();
scanTempStorageBytes
= tksd::invokeScanGenerationLengths(nullptr, 0, nullptr, nullptr, maxNumSequences, stream.get());
reduceTempStorageBytes
= tksd::invokeReduceMaxGenerationLengths(nullptr, 0, nullptr, nullptr, maxNumSequences, stream.get());
scanReduceTempStorage = manager.gpu(std::max(reduceTempStorageBytes, scanTempStorageBytes));
cumSumGenerationLengths = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kINT32);
maxGenerationLength = manager.gpu(ITensor::makeShape({1}), nvinfer1::DataType::kINT32);
// pre-allocate empty tensors
reshape(0, maxNumSequences, modelConfig);
// Init defaults
auto const defaultConfig = decodingConfig.getEagleConfig().value_or(tensorrt_llm::executor::EagleConfig());
mDoGreedySampling = defaultConfig.isGreedySampling();
mDefaultPosteriorThreshold = defaultConfig.getPosteriorThreshold().value_or(mDefaultPosteriorThreshold);
bufferCast<SizeType32>(*greedySamplingHost)[0] = mDoGreedySampling;
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void EagleBuffers::reshape(
SizeType32 numCtxSequences, SizeType32 numGenSequences, runtime::ModelConfig const& modelConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const numSequences = numCtxSequences + numGenSequences;
auto const eagleModule = std::dynamic_pointer_cast<tensorrt_llm::runtime::EagleModule const>(
modelConfig.getSpeculativeDecodingModulePtr());
auto const maxDecodingTokens = eagleModule->getMaxDecodingTokens();
// input tensors
engineInputs.temperatures->reshape(ITensor::makeShape({numSequences}));
engineInputs.posteriorAlpha->reshape(ITensor::makeShape({numSequences}));
engineInputs.posteriorThreshold->reshape(ITensor::makeShape({numSequences}));
posteriorAlphaHost->reshape(ITensor::makeShape({numSequences}));
posteriorThresholdHost->reshape(ITensor::makeShape({numSequences}));
auto draftTokensShape = engineInputs.draftTokens->getShape();
draftTokensShape.d[0] = numSequences;
engineInputs.draftTokens->reshape(draftTokensShape);
auto draftLensShape = engineInputs.draftLens->getShape();
draftLensShape.d[0] = numSequences;
engineInputs.draftLens->reshape(draftLensShape);
auto draftPathsShape = engineInputs.draftPaths->getShape();
draftPathsShape.d[0] = numSequences;
engineInputs.draftPaths->reshape(draftPathsShape);
engineInputs.specDecodingGenerationLengths->reshape(ITensor::makeShape({numGenSequences}));
engineInputs.specDecodingPositionOffsets->reshape(ITensor::makeShape({numGenSequences, maxDecodingTokens}));
engineInputs.specDecodingPackedMasks->reshape(
ITensor::makeShape({numGenSequences * maxDecodingTokens, common::ceilDiv(maxDecodingTokens, 32)}));
engineInputs.randomDataSample->reshape(ITensor::makeShape({numSequences}));
engineInputs.randomDataValidation->reshape(ITensor::makeShape({numSequences, maxDecodingTokens}));
engineInputs.eagleNetCtxRequestTypesHost->reshape(ITensor::makeShape({numSequences}));
engineInputs.eagleNetCtxContextLengthsHost->reshape(ITensor::makeShape({numSequences}));
engineInputs.eagleNetCtxPastKeyValueLengthsHost->reshape(ITensor::makeShape({numSequences}));
engineInputs.eagleNetGenRequestTypesHost->reshape(ITensor::makeShape({numSequences}));
engineInputs.eagleNetGenContextLengthsHost->reshape(ITensor::makeShape({numSequences}));
engineInputs.eagleNetGenPastKeyValueLengthsHost->reshape(ITensor::makeShape({numSequences}));
engineInputs.inputGenTokensHost->reshape(ITensor::makeShape({numSequences * maxDecodingTokens}));
engineInputs.chunkedContextNextTokens->reshape(ITensor::makeShape({numSequences}));
chunkedContextNextTokensHost->reshape(ITensor::makeShape({numSequences}));
engineOutputs.chunkedContextNextTokens->reshape(ITensor::makeShape({numSequences}));
cumSumGenerationLengths->reshape(ITensor::makeShape({numSequences + 1}));
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void EagleBuffers::setFromInputs(RequestVector const& contextRequests, RequestVector const& genRequests,
SizeType32 vocabSizePadded, ITensor const& seqSlots, EagleBuffers::Inputs const& draftBuffers,
runtime::EagleModule const& eagleModule, runtime::BufferManager const& manager) const
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
using runtime::bufferCast;
auto const numCtxSequences = static_cast<SizeType32>(contextRequests.size());
auto const numGenSequences = static_cast<SizeType32>(genRequests.size());
tksd::PackEagleParams params;
params.batchSize = numCtxSequences + numGenSequences;
params.maxNumPaths = eagleModule.getMaxNumPaths();
params.maxDecodingTokens = eagleModule.getMaxDecodingTokens();
params.maxPathLength = eagleModule.getMaxPathLen();
params.numContextRequests = numCtxSequences;
params.numGenerationRequests = numGenSequences;
params.batchSlots = bufferCast<SizeType32>(seqSlots);
// Outputs from decoder -- inputs to the packing kernel
params.inputTemperatures = bufferCast<float>(*draftBuffers.temperatures);
params.inputRandomDataSample = bufferCast<float>(*draftBuffers.randomDataSample);
params.inputRandomDataValidation = bufferCast<float>(*draftBuffers.randomDataValidation);
params.inputNextDraftTokens = bufferCast<runtime::TokenIdType>(*draftBuffers.draftTokens);
params.inputNextDraftPaths = bufferCast<SizeType32>(*draftBuffers.draftPaths);
params.inputSpecDecodingGenerationLengths = bufferCast<SizeType32>(*draftBuffers.specDecodingGenerationLengths);
params.inputSpecDecodingPositionOffsets = bufferCast<SizeType32>(*draftBuffers.specDecodingPositionOffsets);
params.inputSpecDecodingPackedMasks = bufferCast<int32_t>(*draftBuffers.specDecodingPackedMasks);
// Outputs of the packing kernel -- inputs to the engine
params.outputTemperatures = bufferCast<float>(*engineInputs.temperatures);
params.outputRandomDataSample = bufferCast<float>(*engineInputs.randomDataSample);
params.outputRandomDataValidation = bufferCast<float>(*engineInputs.randomDataValidation);
params.outputNextDraftTokens = bufferCast<runtime::TokenIdType>(*engineInputs.draftTokens);
params.outputNextDraftLens = bufferCast<SizeType32>(*engineInputs.draftLens);
params.outputNextDraftPaths = bufferCast<SizeType32>(*engineInputs.draftPaths);
params.outputSpecDecodingGenerationLengths = bufferCast<SizeType32>(*engineInputs.specDecodingGenerationLengths);
params.outputSpecDecodingPositionOffsets = bufferCast<SizeType32>(*engineInputs.specDecodingPositionOffsets);
params.outputSpecDecodingPackedMasks = bufferCast<int32_t>(*engineInputs.specDecodingPackedMasks);
params.maxGenerationLength = bufferCast<SizeType32>(*maxGenerationLength);
params.cumSumGenerationLengths = bufferCast<SizeType32>(*cumSumGenerationLengths);
params.checkParams();
// Pack tensors from batch slot position to continuous array
tksd::invokePackEagleGenerationLengths(params, manager.getStream().get());
if (numGenSequences)
{
// Compute inclusive sum and max
tksd::invokeScanReduceGenerationLengths(numGenSequences,
bufferCast<SizeType32>(*engineInputs.specDecodingGenerationLengths),
bufferCast<uint8_t>(*scanReduceTempStorage), scanTempStorageBytes,
bufferCast<SizeType32>(*cumSumGenerationLengths), bufferCast<uint8_t>(*scanReduceTempStorage),
reduceTempStorageBytes, bufferCast<SizeType32>(*maxGenerationLength), manager.getStream().get());
}
// Pack tensors from batch slot position to continuous array
tksd::invokePackEagle(params, manager.getStream().get());
// Pack host data.
SizeType32 maxGenerationLengthHostValue{-1};
SizeType32 numGenerationTokens{0};
SizeType32 batchIdx{0};
auto chunkedContextNextTokensHostPtr = bufferCast<TokenIdType>(*chunkedContextNextTokensHost);
std::fill(chunkedContextNextTokensHostPtr, chunkedContextNextTokensHostPtr + params.batchSize, -1);
auto setupEagleNetHostBuffers = [this, &draftBuffers](SizeType32 batchIdx, SizeType32 batchSlot)
{
bufferCast<SizeType32>(*this->engineInputs.eagleNetCtxRequestTypesHost)[batchIdx]
= bufferCast<SizeType32>(*draftBuffers.eagleNetCtxRequestTypesHost)[batchSlot];
bufferCast<SizeType32>(*this->engineInputs.eagleNetCtxContextLengthsHost)[batchIdx]
= bufferCast<SizeType32>(*draftBuffers.eagleNetCtxContextLengthsHost)[batchSlot];
bufferCast<SizeType32>(*this->engineInputs.eagleNetCtxPastKeyValueLengthsHost)[batchIdx]
= bufferCast<SizeType32>(*draftBuffers.eagleNetCtxPastKeyValueLengthsHost)[batchSlot];
bufferCast<SizeType32>(*this->engineInputs.eagleNetGenRequestTypesHost)[batchIdx]
= bufferCast<SizeType32>(*draftBuffers.eagleNetGenRequestTypesHost)[batchSlot];
bufferCast<SizeType32>(*this->engineInputs.eagleNetGenContextLengthsHost)[batchIdx]
= bufferCast<SizeType32>(*draftBuffers.eagleNetGenContextLengthsHost)[batchSlot];
bufferCast<SizeType32>(*this->engineInputs.eagleNetGenPastKeyValueLengthsHost)[batchIdx]
= bufferCast<SizeType32>(*draftBuffers.eagleNetGenPastKeyValueLengthsHost)[batchSlot];
};
auto posteriorAlphaHostPtr = bufferCast<float>(*posteriorAlphaHost);
auto posteriorThresholdHostPtr = bufferCast<float>(*posteriorThresholdHost);
auto setPosteriorThresholds
= [this, posteriorAlphaHostPtr, posteriorThresholdHostPtr](LlmRequestPtr const& llmReq, SizeType32 batchIdx)
{
auto const eagleConfig = llmReq->getEagleConfig();
float posteriorThreshold{this->mDefaultPosteriorThreshold};
if (eagleConfig.has_value())
{
posteriorThreshold = eagleConfig->getPosteriorThreshold().value_or(posteriorThreshold);
}
posteriorAlphaHostPtr[batchIdx] = std::sqrt(posteriorThreshold);
posteriorThresholdHostPtr[batchIdx] = posteriorThreshold;
};
for (auto const& llmReq : contextRequests)
{
if (llmReq->isLastContextChunk())
{
auto const batchSlot = params.batchSlots[batchIdx];
setupEagleNetHostBuffers(batchIdx, batchSlot);
}
else
{
auto const contextChunkSize = llmReq->getContextChunkSize();
auto const beginCompute = llmReq->getContextCurrentPosition();
auto const endCompute = beginCompute + contextChunkSize;
// Fill values for requests with chunked context as their decoder setup step is skipped.
bufferCast<SizeType32>(*engineInputs.eagleNetCtxRequestTypesHost)[batchIdx] = 0;
bufferCast<SizeType32>(*engineInputs.eagleNetCtxContextLengthsHost)[batchIdx] = contextChunkSize;
bufferCast<SizeType32>(*engineInputs.eagleNetCtxPastKeyValueLengthsHost)[batchIdx]
= beginCompute + contextChunkSize;
bufferCast<SizeType32>(*engineInputs.eagleNetGenRequestTypesHost)[batchIdx] = 1;
bufferCast<SizeType32>(*engineInputs.eagleNetGenContextLengthsHost)[batchIdx]
= beginCompute + contextChunkSize;
bufferCast<SizeType32>(*engineInputs.eagleNetGenPastKeyValueLengthsHost)[batchIdx]
= beginCompute + contextChunkSize;
// Setup fake path
TensorPtr draftPathsHost = BufferManager::pinnedPool(
ITensor::makeShape({1, eagleModule.getMaxPathLen()}), nvinfer1::DataType::kINT32);
for (SizeType32 ti = 0; ti < eagleModule.getMaxPathLen(); ++ti)
{
bufferCast<SizeType32>(*draftPathsHost)[ti] = ti;
}
TensorPtr draftPathsBatchSlice = ITensor::slice(engineInputs.draftPaths, batchIdx, 1);
draftPathsBatchSlice->squeeze(0);
kernels::invokeFill(*draftPathsBatchSlice, -1, manager.getStream());
TensorPtr draftPathsBatchPathSlice = ITensor::slice(draftPathsBatchSlice, 0, 1);
manager.copy(*draftPathsHost, *draftPathsBatchPathSlice);
auto const& reqTokens = llmReq->getTokens(0);
chunkedContextNextTokensHostPtr[batchIdx] = reqTokens[endCompute];
}
setPosteriorThresholds(llmReq, batchIdx);
++batchIdx;
}
for (auto const& llmReq : genRequests)
{
auto const batchSlot = params.batchSlots[batchIdx];
setupEagleNetHostBuffers(batchIdx, batchSlot);
setPosteriorThresholds(llmReq, batchIdx);
auto const generationLength
= bufferCast<SizeType32>(*draftBuffers.specDecodingGenerationLengthsHost)[batchSlot];
maxGenerationLengthHostValue = std::max(maxGenerationLengthHostValue, generationLength);
numGenerationTokens += generationLength;
++batchIdx;
}
if (maxGenerationLengthHostValue <= 0)
{
maxGenerationLengthHostValue = params.maxDecodingTokens;
}
auto specDecodingPositionOffsetsShape = engineInputs.specDecodingPositionOffsets->getShape();
specDecodingPositionOffsetsShape.d[1] = maxGenerationLengthHostValue;
engineInputs.specDecodingPositionOffsets->reshape(specDecodingPositionOffsetsShape);
auto inputGenTokensHostShape = engineInputs.inputGenTokensHost->getShape();
inputGenTokensHostShape.d[0] = numGenerationTokens;
engineInputs.inputGenTokensHost->reshape(inputGenTokensHostShape);
manager.copy(*chunkedContextNextTokensHost, *engineInputs.chunkedContextNextTokens);
manager.copy(*chunkedContextNextTokensHost, *engineOutputs.chunkedContextNextTokens);
manager.copy(*posteriorAlphaHost, *engineInputs.posteriorAlpha);
manager.copy(*posteriorThresholdHost, *engineInputs.posteriorThreshold);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void EagleBuffers::setFromInputs(RequestVector const& contextRequests, RequestVector const& genRequests,
ITensor const& requestTypes, ITensor const& seqSlots, EagleBuffers::Inputs const& draftBuffers,
runtime::TllmRuntime const& runtime, runtime::ModelConfig const& modelConfig,
runtime::WorldConfig const& worldConfig) const
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const& manager = runtime.getBufferManager();
auto const eagleModule
= std::dynamic_pointer_cast<runtime::EagleModule const>(modelConfig.getSpeculativeDecodingModulePtr());
auto const vocabSizePadded = modelConfig.getVocabSizePadded(worldConfig.getSize());
auto const dtype = modelConfig.getDataType();
switch (dtype)
{
case nvinfer1::DataType::kFLOAT:
setFromInputs<float>(
contextRequests, genRequests, vocabSizePadded, seqSlots, draftBuffers, *eagleModule, manager);
break;
case nvinfer1::DataType::kHALF:
setFromInputs<half>(
contextRequests, genRequests, vocabSizePadded, seqSlots, draftBuffers, *eagleModule, manager);
break;
default: TLLM_THROW("DataType %d not supported in EagleBuffers", static_cast<SizeType32>(dtype)); break;
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void EagleBuffers::insertInputTensors(
TensorMap& inputBuffers, TensorMap& outputBuffers, runtime::WorldConfig const& /* worldConfig */) const
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
// inputs
inputBuffers.insert_or_assign("greedy_sampling", greedySamplingHost);
inputBuffers.insert_or_assign("eagle_temperature", engineInputs.temperatures);
inputBuffers.insert_or_assign("posterior_alpha", engineInputs.posteriorAlpha);
inputBuffers.insert_or_assign("posterior_threshold", engineInputs.posteriorThreshold);
inputBuffers.insert_or_assign("spec_decoding_generation_lengths", engineInputs.specDecodingGenerationLengths);
inputBuffers.insert_or_assign("spec_decoding_position_offsets", engineInputs.specDecodingPositionOffsets);
inputBuffers.insert_or_assign("spec_decoding_packed_mask", engineInputs.specDecodingPackedMasks);
inputBuffers.insert_or_assign("rand_data_sample", engineInputs.randomDataSample);
inputBuffers.insert_or_assign("rand_data_validation", engineInputs.randomDataValidation);
inputBuffers.insert_or_assign("draft_tokens", engineInputs.draftTokens);
inputBuffers.insert_or_assign("draft_lens", engineInputs.draftLens);
inputBuffers.insert_or_assign("draft_paths", engineInputs.draftPaths);
inputBuffers.insert_or_assign("host_ctx_eagle_net_request_types", engineInputs.eagleNetCtxRequestTypesHost);
inputBuffers.insert_or_assign("host_ctx_eagle_net_context_lengths", engineInputs.eagleNetCtxContextLengthsHost);
inputBuffers.insert_or_assign(
"host_ctx_eagle_net_past_key_value_lengths", engineInputs.eagleNetCtxPastKeyValueLengthsHost);
inputBuffers.insert_or_assign("host_gen_eagle_net_request_types", engineInputs.eagleNetGenRequestTypesHost);
inputBuffers.insert_or_assign("host_gen_eagle_net_context_lengths", engineInputs.eagleNetGenContextLengthsHost);
inputBuffers.insert_or_assign(
"host_gen_eagle_net_past_key_value_lengths", engineInputs.eagleNetGenPastKeyValueLengthsHost);
inputBuffers.insert_or_assign("input_gen_tokens", engineInputs.inputGenTokensHost);
inputBuffers.insert_or_assign("chunked_context_next_tokens", engineInputs.chunkedContextNextTokens);
// For Eagle-2
inputBuffers.insert_or_assign("use_dynamic_tree", engineInputs.useDynamicTreeHost);
inputBuffers.insert_or_assign("spec_decoding_use", engineInputs.useSpecDecoding);
// outputs
outputBuffers.insert_or_assign("next_draft_tokens", engineOutputs.nextDraftTokens);
outputBuffers.insert_or_assign("next_draft_lens", engineOutputs.nextDraftLens);
outputBuffers.insert_or_assign("next_draft_paths", engineOutputs.nextDraftPaths);
outputBuffers.insert_or_assign("accepted_tokens", engineOutputs.acceptedTokens);
outputBuffers.insert_or_assign("num_accepted_tokens", engineOutputs.acceptedLens);
outputBuffers.insert_or_assign("accepted_paths", engineOutputs.acceptedPaths);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
} // namespace tensorrt_llm::runtime