TensorRT-LLMs/benchmarks/python/enc_dec_benchmark.py

440 lines
20 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
# isort: off
import torch
#isort: on
from base_benchmark import BaseBenchmark
import tensorrt_llm
from tensorrt_llm._utils import (trt_dtype_to_torch, str_dtype_to_trt)
from tensorrt_llm.quantization import QuantMode
from tensorrt_llm.runtime.session import TensorInfo
from tensorrt_llm.runtime import ModelConfig
class EncDecBenchmark(BaseBenchmark):
def __init__(self, args, batch_sizes, in_out_lens, gpu_weights_percents,
rank, world_size):
self.engine_dir = args.engine_dir
self.model_name = args.model
self.enable_fp8 = False # hardcode for enc-dec models
self.dtype = args.dtype
self.runtime_rank = rank
self.world_size = world_size
self.csv_filename = "" # lazy init
self.batch_sizes = batch_sizes
self.in_out_lens = in_out_lens
self.num_beams = args.num_beams
self.build_time = 0
self.quant_mode = QuantMode(0)
# In current implementation, encoder and decoder have the same name,
# builder config, and plugin config. But they can be different in the future.
# So we use separate variables for encoder and decoder here.
self.encoder_engine_model_name = args.model
self.decoder_engine_model_name = args.model
self.gpu_weights_percents = gpu_weights_percents
# only for whisper parameter
self.n_mels = 0
if self.engine_dir is not None:
def read_config(component):
config_path = os.path.join(self.engine_dir, component,
"config.json")
with open(config_path, "r") as f:
config = json.load(f)
builder_config = config['build_config']
plugin_config = builder_config['plugin_config']
pretrained_config = config['pretrained_config']
lora_config = builder_config['lora_config']
builder_config['auto_parallel_config']
use_gpt_attention_plugin = plugin_config["gpt_attention_plugin"]
remove_input_padding = plugin_config["remove_input_padding"]
use_lora_plugin = plugin_config["lora_plugin"]
tp_size = pretrained_config['mapping']['tp_size']
pp_size = pretrained_config['mapping']['pp_size']
world_size = tp_size * pp_size
assert world_size == tensorrt_llm.mpi_world_size(), \
f'Engine world size ({world_size}) != Runtime world size ({tensorrt_llm.mpi_world_size()})'
num_heads = pretrained_config["num_attention_heads"]
hidden_size = pretrained_config["hidden_size"]
head_size = pretrained_config["head_size"]
vocab_size = pretrained_config["vocab_size"]
max_batch_size = builder_config["max_batch_size"]
max_beam_width = builder_config["max_beam_width"]
num_layers = pretrained_config["num_hidden_layers"]
num_kv_heads = pretrained_config.get('num_kv_heads', num_heads)
assert (num_heads % tp_size) == 0
num_heads = num_heads // tp_size
hidden_size = hidden_size // tp_size
num_kv_heads = (num_kv_heads + tp_size - 1) // tp_size
cross_attention = pretrained_config[
"architecture"] == "DecoderModel"
skip_cross_qkv = pretrained_config.get('skip_cross_qkv', False)
has_position_embedding = pretrained_config[
"has_position_embedding"]
has_token_type_embedding = hasattr(pretrained_config,
"type_vocab_size")
dtype = pretrained_config["dtype"]
paged_kv_cache = plugin_config['paged_kv_cache']
tokens_per_block = plugin_config['tokens_per_block']
gather_context_logits = builder_config.get(
'gather_context_logits', False)
gather_generation_logits = builder_config.get(
'gather_generation_logits', False)
max_prompt_embedding_table_size = builder_config.get(
'max_prompt_embedding_table_size', 0)
self.max_batch_size = config["build_config"]["max_batch_size"]
self.max_input_len = config["build_config"][
"max_encoder_input_len"]
self.max_seq_len = config["build_config"]["max_seq_len"]
model_config = ModelConfig(
num_heads=num_heads,
num_kv_heads=num_kv_heads,
hidden_size=hidden_size,
head_size=head_size,
max_batch_size=max_batch_size,
max_beam_width=max_beam_width,
vocab_size=vocab_size,
num_layers=num_layers,
gpt_attention_plugin=use_gpt_attention_plugin,
remove_input_padding=remove_input_padding,
paged_kv_cache=paged_kv_cache,
tokens_per_block=tokens_per_block,
cross_attention=cross_attention,
has_position_embedding=has_position_embedding,
has_token_type_embedding=has_token_type_embedding,
dtype=dtype,
gather_context_logits=gather_context_logits,
gather_generation_logits=gather_generation_logits,
max_prompt_embedding_table_size=
max_prompt_embedding_table_size,
lora_plugin=use_lora_plugin,
lora_target_modules=lora_config.get('lora_target_modules'),
trtllm_modules_to_hf_modules=lora_config.get(
'trtllm_modules_to_hf_modules'),
skip_cross_qkv=skip_cross_qkv,
)
return model_config
self.encoder_model_config = read_config("encoder")
self.decoder_model_config = read_config("decoder")
self.encoder_engine_name = 'rank{}.engine'.format(self.runtime_rank)
self.decoder_engine_name = 'rank{}.engine'.format(self.runtime_rank)
self.encoder_runtime_mapping = tensorrt_llm.Mapping(
world_size=self.world_size,
rank=self.runtime_rank,
tp_size=self.world_size,
)
self.decoder_runtime_mapping = tensorrt_llm.Mapping(
world_size=self.world_size,
rank=self.runtime_rank,
tp_size=self.world_size,
)
torch.cuda.set_device(self.runtime_rank %
self.encoder_runtime_mapping.gpus_per_node)
self.device = torch.cuda.current_device()
# Deserialize engine from engine directory
self.encoder_serialize_path = os.path.join(self.engine_dir, "encoder",
self.encoder_engine_name)
with open(self.encoder_serialize_path, "rb") as f:
encoder_engine_buffer = f.read()
assert encoder_engine_buffer is not None
self.decoder_serialize_path = os.path.join(self.engine_dir, "decoder",
self.decoder_engine_name)
with open(self.decoder_serialize_path, "rb") as f:
decoder_engine_buffer = f.read()
assert decoder_engine_buffer is not None
# session setup
self.encoder_session = tensorrt_llm.runtime.Session.from_serialized_engine(
encoder_engine_buffer)
self.decoder_session = tensorrt_llm.runtime.GenerationSession(
self.decoder_model_config, decoder_engine_buffer,
self.decoder_runtime_mapping)
# Print context memory size for CI/CD to track.
context_mem_size = self.encoder_session.context_mem_size + self.decoder_session.context_mem_size
print(
f"Allocated {context_mem_size / 1048576.0:.2f} MiB for execution context memory."
)
def get_config(self):
if 'whisper' in self.model_name:
print(
f"[WARNING] whisper benchmark is input_len=1500, no text prompt, output_len=arbitrary"
)
for inlen, outlen in self.in_out_lens:
if (inlen > self.max_input_len or outlen > self.max_seq_len):
print(
f"[WARNING] check inlen({inlen}) <= max_inlen({self.max_input_len}) and "
f"outlen({outlen}) <= max_seqlen({self.max_seq_len}) failed, skipping."
)
continue
for batch_size in self.batch_sizes:
if batch_size > self.max_batch_size:
print(
f"[WARNING] check batch_size({batch_size}) "
f"<= max_batch_size({self.max_batch_size}) failed, skipping."
)
continue
for gpu_weights_percent in self.gpu_weights_percents:
yield (batch_size, inlen, outlen, gpu_weights_percent)
def set_weight_streaming(self, config):
gpu_weights_percent = config[3]
self.encoder_session._set_weight_streaming(gpu_weights_percent)
self.decoder_session._set_weight_streaming(gpu_weights_percent)
def prepare_inputs(self, config):
batch_size, encoder_input_len = config[0], config[1]
attention_mask = None
whisper_decoder_encoder_input_lengths = None
outputs = {}
if 'whisper' in self.model_name:
# feature_len always fixed 3000 now
feature_len = 3000
encoder_input_ids = (torch.randint(
1, 100, (batch_size, self.n_mels, feature_len)).int().cuda())
encoder_input_lengths = torch.tensor([
encoder_input_ids.shape[2] // 2
for _ in range(encoder_input_ids.shape[0])
],
dtype=torch.int32,
device=self.device)
decoder_input_ids = (torch.randint(1, 100, (1, )).int().cuda())
decoder_input_ids = decoder_input_ids.repeat(
(encoder_input_ids.shape[0], 1))
output_list = [
TensorInfo('x', str_dtype_to_trt(self.dtype),
encoder_input_ids.shape),
TensorInfo('input_lengths', str_dtype_to_trt('int32'),
encoder_input_lengths.shape)
]
output_info = (self.encoder_session).infer_shapes(output_list)
outputs = {
t.name: torch.empty(tuple(t.shape),
dtype=trt_dtype_to_torch(t.dtype),
device='cuda')
for t in output_info
}
whisper_decoder_encoder_input_lengths = torch.tensor(
[
outputs['output'].shape[1]
for x in range(outputs['output'].shape[0])
],
dtype=torch.int32,
device='cuda')
decoder_input_lengths = torch.tensor([
decoder_input_ids.shape[-1]
for _ in range(decoder_input_ids.shape[0])
],
dtype=torch.int32,
device='cuda')
cross_attention_mask = torch.ones(
[outputs['output'].shape[0], 1,
outputs['output'].shape[1]]).int().cuda()
else:
encoder_input_ids = (torch.randint(
100, (batch_size, encoder_input_len)).int().cuda())
# For now, just hardcode the decoder_start_token_id to 0 for t5 models.
decoder_start_token_id = 0
decoder_input_ids = torch.IntTensor([[decoder_start_token_id]
]).to(self.device)
decoder_input_ids = decoder_input_ids.repeat(
(encoder_input_ids.shape[0], 1))
# in padding mode --> keep input, just calculate actual length and max length
# Note: 1st token should always count, even if it is pad_token_id (0). e.g., decoder start id in enc-dec models could be a single pad_token_id, we should count
encoder_input_lengths = ((
1 + (encoder_input_ids[:, 1:] != 0).sum(dim=1).type(
torch.IntTensor).to(self.device)).clone().detach().to(
dtype=torch.int32, device=self.device))
decoder_input_lengths = ((
1 + (decoder_input_ids[:, 1:] != 0).sum(dim=1).type(
torch.IntTensor).to(self.device)).clone().detach().to(
dtype=torch.int32, device=self.device))
# attention mask, always set 1 as if all are valid tokens
attention_mask = torch.ones(
(batch_size, encoder_input_len)).int().cuda()
# cross attention mask, always set 1 as if all are valid tokens
# [batch_size, query_len, encoder_input_len] currently, use query_len=1
cross_attention_mask = torch.ones(
(batch_size, 1, encoder_input_len)).int().cuda()
hidden_size = (self.encoder_model_config.hidden_size *
self.world_size) # tp_size
hidden_states_shape = (
encoder_input_ids.shape[0],
encoder_input_ids.shape[1],
hidden_size,
)
hidden_states_dtype = lambda name: trt_dtype_to_torch(
self.encoder_session.engine.get_tensor_dtype(name))
outputs["encoder_output"] = torch.empty(
hidden_states_shape,
dtype=hidden_states_dtype("encoder_output"),
device=self.device,
).contiguous()
stream = torch.cuda.current_stream().cuda_stream
return (
encoder_input_ids,
encoder_input_lengths,
attention_mask,
decoder_input_ids,
decoder_input_lengths,
cross_attention_mask,
whisper_decoder_encoder_input_lengths,
outputs,
stream,
)
def run(self, inputs, config, benchmark_profiler=None):
output_len = config[2]
(
encoder_input_ids,
encoder_input_lengths,
attention_mask,
decoder_input_ids,
decoder_input_lengths,
cross_attention_mask,
whisper_decoder_encoder_input_lengths,
outputs,
stream,
) = inputs
hidden_states_dtype = lambda name: trt_dtype_to_torch(
self.encoder_session.engine.get_tensor_dtype(name))
# input tensors
inputs = {}
if 'whisper' in self.model_name:
inputs['x'] = encoder_input_ids.contiguous()
inputs["input_lengths"] = encoder_input_lengths
else:
inputs["input_ids"] = encoder_input_ids.contiguous()
inputs["input_lengths"] = encoder_input_lengths
inputs["max_input_length"] = torch.empty(
(self.max_input_len, ),
dtype=hidden_states_dtype("max_input_length"),
device=self.device,
).contiguous()
if not self.encoder_model_config.gpt_attention_plugin:
inputs["attention_mask"] = attention_mask.contiguous()
if self.encoder_model_config.has_position_embedding:
bsz, seq_len = encoder_input_ids.shape[:2]
position_ids = torch.arange(
seq_len, dtype=torch.int32,
device=encoder_input_ids.device).expand(bsz, -1)
inputs['position_ids'] = position_ids.contiguous()
# run encoder
self.encoder_session.set_shapes(inputs)
ok = self.encoder_session.run(inputs, outputs, stream)
assert ok, "Runtime execution failed"
torch.cuda.synchronize()
# run decoder
sampling_config = tensorrt_llm.runtime.SamplingConfig(
end_id=1, pad_id=0, num_beams=self.num_beams, min_length=output_len)
encoder_output = outputs[
'output'] if 'whisper' in self.model_name else outputs[
"encoder_output"]
encoder_max_input_length = encoder_output.shape[
1] if 'whisper' in self.model_name else torch.max(
encoder_input_lengths).item()
self.decoder_session.setup(
decoder_input_lengths.size(0),
torch.max(decoder_input_lengths).item(),
output_len,
beam_width=self.num_beams,
max_attention_window_size=None,
encoder_max_input_length=encoder_max_input_length,
)
cross_attention_mask = None if self.decoder_model_config.gpt_attention_plugin else cross_attention_mask
self.decoder_session.decode(
decoder_input_ids,
decoder_input_lengths,
sampling_config,
encoder_output=encoder_output,
encoder_input_lengths=whisper_decoder_encoder_input_lengths
if 'whisper' in self.model_name else encoder_input_lengths,
cross_attention_mask=cross_attention_mask,
)
def report(self,
config,
latency,
percentile95,
percentile99,
peak_gpu_used,
csv,
benchmark_profiler=None):
# Note: Theoretically, the encoder and decoder can have different configs.
# But for current implementation, we assume they are the same. In the future,
# we can have a special structure of report_dict for enc-dec models.
report_dict = super().get_report_dict()
batch_size, encoder_input_len, output_len = config[0], config[
1], config[2]
tokens_per_sec = round(batch_size * output_len / (latency / 1000), 2)
report_dict["num_heads"] = self.encoder_model_config.num_heads
report_dict["num_kv_heads"] = self.encoder_model_config.num_kv_heads
report_dict["num_layers"] = self.encoder_model_config.num_layers
report_dict["hidden_size"] = self.encoder_model_config.hidden_size
report_dict["vocab_size"] = self.encoder_model_config.vocab_size
report_dict["batch_size"] = batch_size
report_dict["input_length"] = encoder_input_len
report_dict["output_length"] = output_len
report_dict["gpu_weights_percent"] = config[3]
report_dict["latency(ms)"] = latency
report_dict["build_time(s)"] = self.build_time
report_dict["tokens_per_sec"] = tokens_per_sec
report_dict["percentile95(ms)"] = percentile95
report_dict["percentile99(ms)"] = percentile99
report_dict["gpu_peak_mem(gb)"] = peak_gpu_used
if self.runtime_rank == 0:
if csv:
line = ",".join([str(v) for v in report_dict.values()])
print(line)
with open(self.get_csv_filename(), "a") as file:
file.write(line + "\n")
else:
kv_pairs = [f"{k} {v}" for k, v in report_dict.items()]
line = "[BENCHMARK] " + " ".join(kv_pairs)
print(line)