TensorRT-LLMs/benchmarks/python/gpt_benchmark.py

285 lines
12 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from math import ceil
import pandas as pd
import tensorrt as trt
import torch
import tensorrt_llm
from tensorrt_llm.builder import Engine
from tensorrt_llm.runtime import (ChatGLMGenerationSession, GenerationSession,
SamplingConfig)
from base_benchmark import BaseBenchmark # isort:skip
def element_size(dtype: str):
str_to_size_in_bytes = dict(float16=2,
float32=4,
int64=8,
int32=4,
int8=1,
bool=1,
bfloat16=2,
fp8=1)
return str_to_size_in_bytes[dtype]
class GPTBenchmark(BaseBenchmark):
def __init__(self, args, batch_sizes, in_out_lens, gpu_weights_percents,
rank, world_size):
super().__init__(args.engine_dir, args.model, args.dtype, rank,
world_size)
self.batch_sizes = batch_sizes
self.in_out_lens = in_out_lens
self.gpu_weights_percents = gpu_weights_percents
self.num_beams = args.num_beams
self.cuda_graph_mode = args.enable_cuda_graph
self.dump_layer_info = args.dump_layer_info
# Get build configs from engine directory is done in base class
# Deserialize engine from engine directory
engine = Engine.from_dir(args.engine_dir, rank)
engine_buffer = engine.engine
assert engine_buffer is not None
pretrained_config = engine.config.pretrained_config
if pretrained_config.architecture == 'ChatGLMForCausalLM' and pretrained_config.chatglm_version in [
'glm', 'chatglm'
]:
session_cls = ChatGLMGenerationSession
else:
session_cls = GenerationSession
if not hasattr(self, 'num_kv_heads') or self.num_kv_heads is None:
self.num_kv_heads = self.num_heads
rnn_config_items = [
'conv_kernel', 'layer_types', 'rnn_hidden_size', 'state_size',
'state_dtype', 'rnn_head_size', 'rnn_conv_dim_size'
]
rnn_configs_kwargs = {}
for item in rnn_config_items:
if hasattr(self, item):
rnn_configs_kwargs[item] = getattr(self, item)
model_config = tensorrt_llm.runtime.ModelConfig(
max_batch_size=self.max_batch_size,
max_beam_width=self.num_beams,
vocab_size=self.vocab_size,
num_layers=self.num_layers,
num_heads=self.num_heads // self.world_size,
num_kv_heads=ceil(self.num_kv_heads / self.world_size),
hidden_size=self.hidden_size // self.world_size,
gpt_attention_plugin=self.use_gpt_attention_plugin,
paged_kv_cache=self.paged_kv_cache if hasattr(
self, 'paged_kv_cache') else False,
paged_state=self.paged_state
if hasattr(self, 'paged_state') else False,
dtype=self.dtype,
remove_input_padding=self.remove_input_padding,
quant_mode=self.quant_mode,
tokens_per_block=self.tokens_per_block if hasattr(
self, 'tokens_per_block') else 64,
mamba_conv1d_plugin=self.use_mamba_conv1d_plugin,
gpu_weights_percent=list(sorted(gpu_weights_percents))[0],
**rnn_configs_kwargs,
)
self.sampling_config = SamplingConfig(end_id=2, pad_id=0)
self.decoder = session_cls(model_config,
engine_buffer,
self.runtime_mapping,
cuda_graph_mode=self.cuda_graph_mode)
# Print context memory size for CI/CD to track.
context_mem_size = self.decoder.context_mem_size
print(
f"Allocated {context_mem_size / 1048576.0:.2f} MiB for execution context memory."
)
def get_config(self):
for inlen, outlen in self.in_out_lens:
if inlen > self.max_input_len or inlen + outlen > self.max_seq_len:
print(
f'[WARNING] check inlen({inlen}) <= max_inlen({self.max_input_len}) or '
f'seqlen({inlen + outlen}) <= max_seq_len({self.max_seq_len}) failed, skipping.'
)
continue
for batch_size in self.batch_sizes:
if batch_size > self.max_batch_size:
print(
f'[WARNING] check batch_size({batch_size}) '
f'<= max_batch_size({self.max_batch_size}) failed, skipping.'
)
continue
for gpu_weights_percent in self.gpu_weights_percents:
yield (batch_size, inlen, outlen, gpu_weights_percent)
def set_weight_streaming(self, config):
gpu_weights_percent = config[3]
self.decoder.runtime._set_weight_streaming(gpu_weights_percent)
def prepare_inputs(self, config):
batch_size, inlen, outlen = config[0], config[1], config[2]
input_ids = torch.randint(100, (batch_size, inlen)).int().cuda()
input_lengths = torch.tensor([inlen
for _ in range(batch_size)]).int().cuda()
self.decoder.setup(batch_size, inlen, outlen, beam_width=self.num_beams)
return (input_ids, input_lengths)
def get_report_dict(self, benchmark_profiler=None):
report_dict = super().get_report_dict(
benchmark_profiler=benchmark_profiler)
if benchmark_profiler is not None:
report_dict["generation_time(ms)"] = None
report_dict["total_generated_tokens"] = None
report_dict["generation_tokens_per_second"] = None
return report_dict
def run(self, inputs, config, benchmark_profiler=None):
batch_size, inlen, outlen = config[0], config[1], config[2]
self.decoder.setup(batch_size, inlen, outlen, beam_width=self.num_beams)
if self.remove_input_padding:
self.decoder.decode_batch(inputs[0],
self.sampling_config,
benchmark_profiler=benchmark_profiler)
else:
self.decoder.decode(inputs[0],
inputs[1],
self.sampling_config,
benchmark_profiler=benchmark_profiler)
torch.cuda.synchronize()
def report(self,
config,
latency,
percentile95,
percentile99,
peak_gpu_used,
csv,
benchmark_profiler=None):
report_dict = super().get_report_dict()
batch_size, inlen, outlen, gpu_weights_percent = config[0], config[
1], config[2], config[3]
tokens_per_sec = round(batch_size * outlen / (latency / 1000), 2)
report_dict["num_heads"] = self.num_heads
report_dict["num_kv_heads"] = self.num_kv_heads
report_dict["num_layers"] = self.num_layers
report_dict["hidden_size"] = self.hidden_size
report_dict["vocab_size"] = self.vocab_size
report_dict["batch_size"] = batch_size
report_dict["gpu_weights_percent"] = gpu_weights_percent
report_dict["input_length"] = inlen
report_dict["output_length"] = outlen
report_dict["latency(ms)"] = latency
report_dict["tokens_per_sec"] = tokens_per_sec
report_dict["percentile95(ms)"] = percentile95
report_dict["percentile99(ms)"] = percentile99
report_dict["gpu_peak_mem(gb)"] = peak_gpu_used
if benchmark_profiler is not None:
iter_count = benchmark_profiler.get_aux_info('iter_count')
generation_time_ms = benchmark_profiler.get_timer_value(
'generation_time')
generation_step_count = benchmark_profiler.get_aux_info(
'generation_step_count')
token_per_step = batch_size * self.num_beams
total_tokens = generation_step_count * token_per_step
report_dict["generation_time(ms)"] = round(
generation_time_ms / iter_count, 3)
report_dict["total_generated_tokens"] = total_tokens / iter_count
tokens_per_second = round(
total_tokens * 1000.0 / generation_time_ms, 3)
report_dict["generation_tokens_per_second"] = tokens_per_second
if self.runtime_rank == 0:
if csv:
line = ",".join([str(v) for v in report_dict.values()])
print(line)
with open(self.get_csv_filename(), "a") as file:
file.write(line + "\n")
else:
kv_pairs = [f"{k} {v}" for k, v in report_dict.items()]
line = '[BENCHMARK] ' + " ".join(kv_pairs)
print(line)
if self.dump_layer_info:
engine_inspector = self.decoder.engine_inspector
inspector_result = engine_inspector.get_engine_information(
trt.LayerInformationFormat.JSON)
json_result = json.loads(inspector_result)
layers = json_result["Layers"]
for layer_idx, _ in enumerate(layers):
layer_info = engine_inspector.get_layer_information(
layer_idx, trt.LayerInformationFormat.ONELINE)
print(layer_info)
def report_profiler(self, benchmark_profiler=None):
if benchmark_profiler is not None and benchmark_profiler.is_recording_perf_profile:
perf_profile_data = self.decoder.profiler.results
if not perf_profile_data:
tensorrt_llm.logger.error("profiler data is empty")
return
ctx_layers = list()
generation_layers = list()
start = 0
ctx_iter_cnt = 0
generation_iter_cnt = 0
# split context/generations layer information
for idx, layer_info in enumerate(perf_profile_data):
if layer_info[0] == "step":
if layer_info[1] == 0:
ctx_layers.extend(perf_profile_data[start:idx])
ctx_iter_cnt += 1
else:
generation_layers.extend(perf_profile_data[start:idx])
generation_iter_cnt += 1
start = idx + 1
# Reduce all data
def reduce_layer_data(layers):
layer_infos = dict()
for layer in layers:
if layer[0] in layer_infos:
layer_infos[layer[0]] += layer[1]
else:
layer_infos[layer[0]] = layer[1]
return layer_infos
# Dump kernel data
def dump_kernel_profile_table(name: str, profile_data: list,
iter_cnt: int):
table = pd.DataFrame(
[['{:0.3f}'.format(v), k]
for k, v in profile_data.items() if v != 0.0],
columns=['times (ms)', '{} Phase LayerName'.format(name)])
def ljust(s):
s = s.astype(str).str.strip()
return s.str.ljust(s.str.len().max())
print(table.apply(ljust).to_string(index=False, justify='left'))
print("{} phase step iter: {}".format(name, iter_cnt))
ctx_layer_infos = reduce_layer_data(ctx_layers)
generation_layer_infos = reduce_layer_data(generation_layers)
dump_kernel_profile_table("Context", ctx_layer_infos, ctx_iter_cnt)
dump_kernel_profile_table("Generation", generation_layer_infos,
generation_iter_cnt)