mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: akhoroshev <arthoroshev@gmail.com> Co-authored-by: Fabian Joswig <fjosw@users.noreply.github.com> Co-authored-by: Tayef Shah <tayefshah@gmail.com> Co-authored-by: lfz941 <linfanzai941@gmail.com>
354 lines
14 KiB
Plaintext
354 lines
14 KiB
Plaintext
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#include "tensorrt_llm/common/assert.h"
|
|
#include "tensorrt_llm/common/cudaBf16Wrapper.h"
|
|
#include "tensorrt_llm/common/cudaFp8Utils.h"
|
|
#include "tensorrt_llm/common/cudaUtils.h"
|
|
#include "tensorrt_llm/common/mathUtils.h"
|
|
#include "tensorrt_llm/common/reduceKernelUtils.cuh"
|
|
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttentionUtils.h"
|
|
#include "tensorrt_llm/kernels/gptKernels.h"
|
|
#include <cub/cub.cuh>
|
|
|
|
using namespace tensorrt_llm::common;
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
namespace kernels
|
|
{
|
|
|
|
// A stateful callback functor that maintains the running sum between consecutive scans.
|
|
struct BlockPrefixCallbackOp
|
|
{
|
|
// Running prefix
|
|
int mRunningTotal;
|
|
|
|
// Constructor
|
|
__device__ BlockPrefixCallbackOp(int runningTotal)
|
|
: mRunningTotal(runningTotal)
|
|
{
|
|
}
|
|
|
|
// Thread-0 is responsible for returning a value for seeding the block-wide scan.
|
|
__device__ int operator()(int blockAggregate)
|
|
{
|
|
int oldPrefix = mRunningTotal;
|
|
mRunningTotal += blockAggregate;
|
|
return oldPrefix;
|
|
}
|
|
};
|
|
|
|
// Given an array of sequence lengths, with batchSize elements, that kernel computes the exclusive
|
|
// prefix-sums of the sequence lengths. There are (batchSize+1) elements in seqOffsets.
|
|
//
|
|
// seqOffsets[ 0] = 0
|
|
// seqOffsets[ii] = seqLengths[0] + .. + seqLengths[ii-1],
|
|
// seqOffsets[batchSize] = seqLengths[0] + .. + seqLengths[batchSize-1]
|
|
//
|
|
// This kernel uses a single thread block of THREADS_PER_BLOCK threads.
|
|
|
|
// This kernel also computes the padding offsets: Given the index (idx) of a token in a ragged tensor,
|
|
// we need the index of the token in the corresponding tensor with padding. We compute an array
|
|
// of numTokens elements, called the paddingOffsets, such that the position in the padded tensor
|
|
// of the token "idx" in the ragged tensor is given by idx + paddingOffset[idx].
|
|
//
|
|
// That kernel uses a grid of batchSize blocks.
|
|
|
|
template <typename T, int THREADS_PER_BLOCK>
|
|
__global__ __launch_bounds__(THREADS_PER_BLOCK) void computeSeqAndPaddingOffsets(BuildDecoderInfoParams<T> params)
|
|
{
|
|
// Dynamic shared memory for storing seqOffsets.
|
|
extern __shared__ int smemSeqQOffsets[];
|
|
|
|
// Fixed Q sequence lengths.
|
|
bool const fixed_q_seqlen = params.seqQLengths == nullptr;
|
|
|
|
// Whether to calculate cumulative KV sequence lengths.
|
|
bool const calculate_kv_offsets = params.seqKVOffsets != nullptr;
|
|
|
|
// Whether to calculate cumulative packed mask rows.
|
|
bool const calculate_packed_mask_row_offsets = params.packedMaskRowOffsets != nullptr;
|
|
|
|
// The implementation of the parallel scan in the thread block (see CUB for details).
|
|
using BlockScan = cub::BlockScan<int, THREADS_PER_BLOCK>;
|
|
|
|
// Allocate storage in shared memory to do the scan.
|
|
__shared__ typename BlockScan::TempStorage tempQStorage;
|
|
[[maybe_unused]] __shared__ typename BlockScan::TempStorage tempMaskStorage;
|
|
[[maybe_unused]] __shared__ typename BlockScan::TempStorage tempKVStorage;
|
|
|
|
// This prefixOp operator keeps a running sum for when we need multiple iterations of the loop.
|
|
BlockPrefixCallbackOp prefixQOp(0);
|
|
BlockPrefixCallbackOp prefixMaskOp(0);
|
|
BlockPrefixCallbackOp prefixKVOp(0);
|
|
|
|
// Iterate over the sequences in the batch.
|
|
//
|
|
// The loop index does not depend on the thread index to make sure all the threads enter the
|
|
// loop as we have __syncthreads in it (and we need all threads to participate to avoid
|
|
// deadlocks).
|
|
// Only the last block computes the full sequence offsets.
|
|
bool const storeSeqOffsets = blockIdx.x == (params.batchSize - 1);
|
|
int const batchSizeBound = blockIdx.x + 1;
|
|
for (int batchOffset = 0; batchOffset <= batchSizeBound; batchOffset += THREADS_PER_BLOCK)
|
|
{
|
|
// The index of the batch.
|
|
int batchIdx = batchOffset + threadIdx.x;
|
|
|
|
// Threads that correspond to valid sequences read the length.
|
|
int seqQLength = 0;
|
|
[[maybe_unused]] int packedMaskRows = 0;
|
|
[[maybe_unused]] int seqKVLength = 0;
|
|
if (batchIdx < batchSizeBound)
|
|
{
|
|
seqQLength = fixed_q_seqlen ? params.maxQSeqLength : params.seqQLengths[batchIdx];
|
|
// Need to pad mask rows to multiple of 128 for each sequence in the batch.
|
|
packedMaskRows = calculate_packed_mask_row_offsets
|
|
? divUp(seqQLength, int(FLASH_ATTEN_PACKED_MASK_M_ALIGNMENT)) * FLASH_ATTEN_PACKED_MASK_M_ALIGNMENT
|
|
: 0;
|
|
seqKVLength = calculate_kv_offsets ? params.seqKVLengths[batchIdx] : 0;
|
|
}
|
|
|
|
// Do the prefix-scan (it calls syncthreads internally).
|
|
int seqQOffset;
|
|
[[maybe_unused]] int packedMaskRowOffset;
|
|
[[maybe_unused]] int seqKVOffset;
|
|
BlockScan(tempQStorage).ExclusiveSum(seqQLength, seqQOffset, prefixQOp);
|
|
if (calculate_packed_mask_row_offsets)
|
|
{
|
|
BlockScan(tempMaskStorage).ExclusiveSum(packedMaskRows, packedMaskRowOffset, prefixMaskOp);
|
|
}
|
|
if (calculate_kv_offsets)
|
|
{
|
|
BlockScan(tempKVStorage).ExclusiveSum(seqKVLength, seqKVOffset, prefixKVOp);
|
|
}
|
|
|
|
// Store the result to smem.
|
|
if (batchIdx <= batchSizeBound)
|
|
{
|
|
smemSeqQOffsets[batchIdx] = seqQOffset;
|
|
}
|
|
|
|
// Store the result.
|
|
if (batchIdx <= batchSizeBound && storeSeqOffsets)
|
|
{
|
|
params.seqQOffsets[batchIdx] = params.removePadding ? seqQOffset : batchIdx * params.maxQSeqLength;
|
|
if (calculate_packed_mask_row_offsets)
|
|
{
|
|
params.packedMaskRowOffsets[batchIdx] = packedMaskRowOffset;
|
|
}
|
|
if (calculate_kv_offsets)
|
|
{
|
|
params.seqKVOffsets[batchIdx] = seqKVOffset;
|
|
}
|
|
}
|
|
|
|
// Make sure the shared memory can be reused for the next iteration of the loop.
|
|
__syncthreads();
|
|
}
|
|
|
|
// Compute the padding offsets.
|
|
// Block x dimension is the batch dimension, while threads iterate all tokens in the sequence.
|
|
int batchIdx = blockIdx.x;
|
|
// The beginning of the sequence.
|
|
int seqBegin = smemSeqQOffsets[batchIdx];
|
|
// The offset to the 1st element of the next sequence.
|
|
int seqEnd = smemSeqQOffsets[batchIdx + 1];
|
|
// The length of the sequence.
|
|
int seqLength = seqEnd - seqBegin;
|
|
|
|
// The number of padded tokens in the previous sequences.
|
|
int paddingOffset = batchIdx * params.maxQSeqLength - seqBegin;
|
|
bool const need_padding_offsets = params.paddingOffsets != nullptr;
|
|
|
|
if (need_padding_offsets)
|
|
{
|
|
// Iterate over the tokens to update the number of padded elements.
|
|
for (int tokenIdx = threadIdx.x; tokenIdx < seqLength; tokenIdx += blockDim.x)
|
|
{
|
|
params.paddingOffsets[seqBegin + tokenIdx] = paddingOffset;
|
|
}
|
|
}
|
|
|
|
// Each block generates the rotary embedding inv_freq tensor for the corresponding sequence.
|
|
int zid = 2 * threadIdx.x;
|
|
int halfRotaryEmbeddingDim = params.rotaryEmbeddingDim / 2;
|
|
if (params.rotaryEmbeddingDim > 0 && zid < params.rotaryEmbeddingDim)
|
|
{
|
|
mmha::update_rotary_base_n_scale(params.rotaryEmbeddingBase, params.rotaryEmbeddingScale,
|
|
params.rotaryScalingType, params.rotaryEmbeddingDim, params.rotaryEmbeddingMaxPositions,
|
|
params.seqKVLengths[batchIdx]);
|
|
// Recompute the rotary scales when it is dynamic scaling.
|
|
if (params.rotaryScalingType == RotaryScalingType::kDYNAMIC || params.rotaryEmbeddingInvFreqCache == nullptr)
|
|
{
|
|
float const invFreq = params.rotaryEmbeddingScale
|
|
/ powf(params.rotaryEmbeddingBase, zid / (float) params.rotaryEmbeddingDim);
|
|
params.rotaryEmbeddingInvFreq[batchIdx * halfRotaryEmbeddingDim + threadIdx.x] = invFreq;
|
|
}
|
|
else
|
|
{
|
|
// Otherwise, expand the inv freq cache to batch size.
|
|
float const invFreqCache = params.rotaryEmbeddingInvFreqCache[threadIdx.x];
|
|
params.rotaryEmbeddingInvFreq[batchIdx * halfRotaryEmbeddingDim + threadIdx.x] = invFreqCache;
|
|
}
|
|
}
|
|
|
|
// Reset fmha tile counter to 0 before launching fmha kernels.
|
|
if (threadIdx.x == 0 && blockIdx.x == 0 && params.fmhaTileCounter != nullptr)
|
|
{
|
|
params.fmhaTileCounter[0] = 0u;
|
|
}
|
|
}
|
|
|
|
// This kernel computes the attention mask. We must compute this on-the-fly in the future.
|
|
|
|
template <typename AttentionMaskDataType>
|
|
__global__ void computeAttentionMask(AttentionMaskDataType* attentionMask, int const* seqLengths, int maxQSeqLength,
|
|
int attentionWindowSize, AttentionMaskType attentionMaskType, BlockSparseParams blockSparseParams)
|
|
{
|
|
// The index of the sequence in the batch.
|
|
int batchIdx = blockIdx.y;
|
|
|
|
// The number of items in the mask for each sequence.
|
|
int maskSize = maxQSeqLength * maxQSeqLength;
|
|
// The offset to the 1st element of the mask for that particular sequence.
|
|
int batchOffset = batchIdx * maskSize;
|
|
|
|
// The length of the sequence.
|
|
int seqLength = seqLengths[batchIdx];
|
|
|
|
// Iterate over the tokens to update the number of padded elements.
|
|
for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < maskSize; idx += gridDim.x * blockDim.x)
|
|
{
|
|
// The position in the matrix.
|
|
int rowIdx = idx / maxQSeqLength;
|
|
int colIdx = idx % maxQSeqLength;
|
|
|
|
// Is it a valid token?
|
|
bool isValid = true;
|
|
switch (attentionMaskType)
|
|
{
|
|
case AttentionMaskType::PADDING:
|
|
isValid = rowIdx < seqLength && colIdx < seqLength;
|
|
// seq_length==4, max_seq_len==5
|
|
// 1 1 1 1 0
|
|
// 1 1 1 1 0
|
|
// 1 1 1 1 0
|
|
// 1 1 1 1 0
|
|
// 0 0 0 0 0
|
|
break;
|
|
case AttentionMaskType::CAUSAL:
|
|
isValid = rowIdx < seqLength && colIdx < seqLength && colIdx <= rowIdx;
|
|
// Sliding_window_causal when there are not enough kv cache.
|
|
isValid = isValid && colIdx >= max(0, rowIdx - attentionWindowSize);
|
|
// seq_length==4, max_seq_len==5
|
|
// 1 0 0 0 0
|
|
// 1 1 0 0 0
|
|
// 1 1 1 0 0
|
|
// 1 1 1 1 0
|
|
// 0 0 0 0 0
|
|
|
|
// seq_length==6, max_seq_len==6, max_attention_window_size = 2
|
|
// 1 0 0 0 0 0
|
|
// 1 1 0 0 0 0
|
|
// 1 1 1 0 0 0
|
|
// 0 1 1 1 0 0
|
|
// 0 0 1 1 1 0
|
|
// 0 0 0 1 1 1
|
|
break;
|
|
case AttentionMaskType::BIDIRECTIONAL:
|
|
// clang-format off
|
|
isValid = (rowIdx < seqLength - 1 && colIdx < seqLength - 1) ||
|
|
(rowIdx == seqLength - 1 && colIdx < seqLength);
|
|
// clang-format on
|
|
// seq_length==4, max_seq_len==5
|
|
// 1 1 1 0 0
|
|
// 1 1 1 0 0
|
|
// 1 1 1 0 0
|
|
// 1 1 1 1 0
|
|
// 0 0 0 0 0
|
|
case AttentionMaskType::BIDIRECTIONALGLM:
|
|
// clang-format off
|
|
isValid = (colIdx < seqLength - 1) ||
|
|
(rowIdx == seqLength - 1 && colIdx == seqLength - 1);
|
|
// clang-format on
|
|
// seq_length==4, max_seq_len==5
|
|
// 1 1 1 1 0
|
|
// 1 1 1 1 0
|
|
// 1 1 1 1 0
|
|
// 1 1 1 1 0
|
|
// 1 1 1 1 1
|
|
break;
|
|
case AttentionMaskType::BLOCKSPARSE:
|
|
isValid = blockSparseParams.computeMask(rowIdx, colIdx, seqLength, 1 /*num_heads*/, 0 /*head_id*/);
|
|
break;
|
|
}
|
|
|
|
// Store the mask.
|
|
attentionMask[batchOffset + idx] = isValid ? AttentionMaskDataType(1.f) : AttentionMaskDataType(0.f);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void invokeBuildDecoderInfo(BuildDecoderInfoParams<T> const& params, cudaStream_t stream)
|
|
{
|
|
// Compute the sequence and padding offsets.
|
|
int const THREADS_PER_BLOCK = 256;
|
|
TLLM_CHECK_WITH_INFO(params.rotaryEmbeddingDim / 2 <= 256 && params.rotaryEmbeddingDim % 2 == 0,
|
|
"Rotary embedding dim is assumed to be smaller than 512 and multiple of 2.");
|
|
TLLM_CHECK_WITH_INFO(
|
|
!(params.seqKVLengths == nullptr && params.rotaryEmbeddingDim > 0), "KV sequence lengths buffer is invalid.");
|
|
const size_t smem_size = (params.batchSize + 1) * sizeof(int);
|
|
computeSeqAndPaddingOffsets<T, THREADS_PER_BLOCK>
|
|
<<<params.batchSize, THREADS_PER_BLOCK, smem_size, stream>>>(params);
|
|
|
|
// Compute the attention mask, if needed.
|
|
if (params.attentionMask != nullptr)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(params.seqQLengths != nullptr, "Q sequence lengths buffer is invalid.");
|
|
int const MIN_BLOCKS = 512;
|
|
int blocksPerSeq = 16;
|
|
while (blocksPerSeq * params.batchSize < MIN_BLOCKS)
|
|
{
|
|
blocksPerSeq *= 2;
|
|
}
|
|
dim3 grid(blocksPerSeq, params.batchSize);
|
|
computeAttentionMask<<<grid, THREADS_PER_BLOCK, 0, stream>>>(params.attentionMask, params.seqQLengths,
|
|
params.maxQSeqLength, params.attentionWindowSize, params.attentionMaskType, params.blockSparseParams);
|
|
}
|
|
}
|
|
|
|
template void invokeBuildDecoderInfo(BuildDecoderInfoParams<float> const&, cudaStream_t);
|
|
template void invokeBuildDecoderInfo(BuildDecoderInfoParams<half> const&, cudaStream_t);
|
|
#ifdef ENABLE_BF16
|
|
template void invokeBuildDecoderInfo(BuildDecoderInfoParams<__nv_bfloat16> const&, cudaStream_t);
|
|
#endif
|
|
#ifdef ENABLE_FP8
|
|
template void invokeBuildDecoderInfo(BuildDecoderInfoParams<__nv_fp8_e4m3> const&, cudaStream_t);
|
|
#endif
|
|
|
|
__global__ void updatePaddingCountKernel(int* paddingPerSeq, int const* seqLengths, int maxQSeqLength, int batchSize)
|
|
{
|
|
|
|
for (int ii = threadIdx.x; ii < batchSize; ii += blockDim.x)
|
|
{
|
|
paddingPerSeq[ii] = maxQSeqLength - seqLengths[ii];
|
|
}
|
|
}
|
|
|
|
} // namespace kernels
|
|
} // namespace tensorrt_llm
|