TensorRT-LLMs/cpp/tensorrt_llm/layers/layerUtils.h
Kaiyu Xie bf0a5afc92
Update TensorRT-LLM (#1598)
* Update TensorRT-LLM
2024-05-14 16:43:41 +08:00

96 lines
3.0 KiB
C++

/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <algorithm>
#include <optional>
#include <utility>
#include <vector>
#include <cuda_runtime.h>
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/kernels/decodingCommon.h"
#include "tensorrt_llm/runtime/common.h"
namespace tensorrt_llm
{
namespace layers
{
// Using a local lambda in beam search layers to fill buffers causes an internal compiler error on nvcc windows.
// As a workaround and to promote DRY, the fill logic is refactored into FillBuffers below.
struct FillBuffers
{
template <typename T>
void operator()(std::optional<std::vector<T>> const& optParam, T const defaultValue, std::vector<T>& hostBuffer,
T* deviceBuffer, runtime::SizeType32 const* batchSlots, std::pair<float, float> const& limits,
std::string const& name) const
{
using tensorrt_llm::common::cudaAutoCpy;
for (size_t bi = 0; bi < batchSize; ++bi)
{
auto value = defaultValue;
auto const batchSlot = batchSlots ? batchSlots[bi] : bi;
if (optParam)
{
if (optParam->size() == 1)
{
value = optParam->front();
}
else
{
TLLM_CHECK_WITH_INFO(optParam->size() == batchSize, "Argument vector size mismatch.");
value = optParam.value()[bi];
}
}
TLLM_CHECK_WITH_INFO(limits.first < static_cast<float>(value) && static_cast<float>(value) <= limits.second,
"%s param (%f) is out of limits (%f, %f]", name.c_str(), static_cast<float>(value), limits.first,
limits.second);
hostBuffer[batchSlot] = value;
}
if (batchSlots)
{
cudaAutoCpy(deviceBuffer, hostBuffer.data(), maxBatchSize, stream);
}
else
{
cudaAutoCpy(deviceBuffer, hostBuffer.data(), batchSize, stream);
}
}
runtime::SizeType32 batchSize;
runtime::SizeType32 maxBatchSize;
cudaStream_t stream;
};
template <typename T>
inline bool allOfBatchSlots(
runtime::SizeType32 const* batchSlotsHost, T const* data, runtime::SizeType32 batchSize, T value)
{
return std::all_of(
batchSlotsHost, batchSlotsHost + batchSize, [&](runtime::SizeType32 b) { return data[b] == value; });
};
} // namespace layers
} // namespace tensorrt_llm