TensorRT-LLMs/cpp/tensorrt_llm/layers/penaltyLayer.cpp
Kaiyu Xie bf0a5afc92
Update TensorRT-LLM (#1598)
* Update TensorRT-LLM
2024-05-14 16:43:41 +08:00

347 lines
14 KiB
C++

/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/layers/penaltyLayer.h"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/kernels/penaltyKernels.h"
#include "tensorrt_llm/layers/defaultDecodingParams.h"
#include <algorithm>
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::kernels;
using namespace tensorrt_llm::runtime;
namespace tensorrt_llm
{
namespace layers
{
template <typename T>
PenaltyLayer<T>::PenaltyLayer(DecodingMode const& mode, DecoderDomain const& decoderDomain, cudaStream_t stream,
std::shared_ptr<IAllocator> allocator)
: BaseLayer(decoderDomain, stream, std::move(allocator))
, mDecodingMode(mode)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
initialize();
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
PenaltyLayer<T>::~PenaltyLayer()
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
freeBuffer();
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void PenaltyLayer<T>::initialize()
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
mLogitsPtrsHost = runtime::BufferManager::pinned(ITensor::makeShape({}), runtime::TRTDataType<T*>::value);
allocateBuffer();
mCyclicStep = 0;
mRuntimeMaxSeqLen = 0;
mConfiguredBeamWidth = -1;
mTemperature.resize(mDecoderDomain.getMaxBatchSize());
mRepetitionPenalty.resize(mDecoderDomain.getMaxBatchSize());
mPresencePenalty.resize(mDecoderDomain.getMaxBatchSize());
mFrequencyPenalty.resize(mDecoderDomain.getMaxBatchSize());
mMinLength.resize(mDecoderDomain.getMaxBatchSize());
if (!mDecodingMode.isNone())
{
mConfiguredBeamWidth = mDecoderDomain.getMaxBeamWidth();
allocateWorkspace();
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void PenaltyLayer<T>::allocateWorkspace()
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const workspaceSize = sizeof(SizeType32) * mDecoderDomain.getMaxBatchSize()
* mDecoderDomain.getMaxTokensPerStep() * mConfiguredBeamWidth * mDecoderDomain.getVocabSize();
mPenaltyWorkspaceDevice = mAllocator->reMalloc(mPenaltyWorkspaceDevice, workspaceSize, false);
if (mDecodingMode.isBeamSearch())
{
mPenaltyWorkspacePrevDevice = mAllocator->reMalloc(mPenaltyWorkspacePrevDevice, workspaceSize, false);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void PenaltyLayer<T>::allocateBuffer()
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
mTemperatureDevice
= mAllocator->reMalloc(mTemperatureDevice, sizeof(float) * mDecoderDomain.getMaxBatchSize(), false);
mRepetitionPenaltyDevice
= mAllocator->reMalloc(mRepetitionPenaltyDevice, sizeof(float) * mDecoderDomain.getMaxBatchSize(), false);
mPresencePenaltyDevice
= mAllocator->reMalloc(mPresencePenaltyDevice, sizeof(float) * mDecoderDomain.getMaxBatchSize(), false);
mFrequencyPenaltyDevice
= mAllocator->reMalloc(mFrequencyPenaltyDevice, sizeof(float) * mDecoderDomain.getMaxBatchSize(), false);
mMinLengthDevice
= mAllocator->reMalloc(mMinLengthDevice, sizeof(SizeType32) * mDecoderDomain.getMaxBatchSize(), false);
mRuntimeLogitsDevice = mAllocator->reMalloc(mRuntimeLogitsDevice,
sizeof(T) * mDecoderDomain.getMaxBatchSize() * mDecoderDomain.getMaxTokensPerStep()
* mDecoderDomain.getMaxBeamWidth() * mDecoderDomain.getVocabSizePadded(),
false);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void PenaltyLayer<T>::freeBuffer()
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
if (mPenaltyWorkspaceDevice != nullptr)
{
mAllocator->free((void**) &mPenaltyWorkspaceDevice);
}
if (mPenaltyWorkspacePrevDevice != nullptr)
{
mAllocator->free((void**) &mPenaltyWorkspacePrevDevice);
}
mAllocator->free((void**) (&mTemperatureDevice));
mAllocator->free((void**) (&mRepetitionPenaltyDevice));
mAllocator->free((void**) (&mPresencePenaltyDevice));
mAllocator->free((void**) (&mFrequencyPenaltyDevice));
mAllocator->free((void**) (&mMinLengthDevice));
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void PenaltyLayer<T>::setup(SizeType32 batchSize, SizeType32 beamWidth, SizeType32 const* batchSlots,
std::shared_ptr<BaseSetupParams> baseSetupParams)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto setupParams = std::dynamic_pointer_cast<DynamicDecodeSetupParams>(baseSetupParams);
if (mConfiguredBeamWidth == -1)
{
// This code is left only for Python runtime
// In C++ runtime given maxBeamWidth should always be equal to the runtime beamWidth
TLLM_CHECK(mDecodingMode.isNone());
mConfiguredBeamWidth = beamWidth;
mDecodingMode = mConfiguredBeamWidth == 1 ? DecodingMode::TopKTopP() : DecodingMode::BeamSearch();
allocateWorkspace();
}
std::vector<SizeType32> batchSlotsVec(batchSize);
std::iota(batchSlotsVec.begin(), batchSlotsVec.end(), 0);
auto batchSlotsHost = batchSlots ? batchSlots : batchSlotsVec.data();
// Setup penalties.
FillBuffers const fillBuffers{batchSize, mDecoderDomain.getMaxBatchSize(), mStream};
auto const& penaltyParams = setupParams->penaltyParams;
bool const useTemperature = penaltyParams.temperature.has_value();
bool const useRepetitionPenalty = penaltyParams.repetitionPenalty.has_value();
bool const usePresencePenalty = penaltyParams.presencePenalty.has_value();
bool const useFrequencyPenalty = penaltyParams.frequencyPenalty.has_value();
bool const useMinLength = penaltyParams.minLength.has_value();
if (useTemperature)
{
fillBuffers(penaltyParams.temperature, DefaultDecodingParams::getTemperature(), mTemperature,
mTemperatureDevice, batchSlotsHost, getLimitsPenalty(DecodingPenaltyType::Temperature),
"temperature penalty");
}
if (useRepetitionPenalty)
{
fillBuffers(penaltyParams.repetitionPenalty, DefaultDecodingParams::getRepetitionPenalty(), mRepetitionPenalty,
mRepetitionPenaltyDevice, batchSlotsHost, getLimitsPenalty(DecodingPenaltyType::Repetition),
"repetition penalty");
}
if (usePresencePenalty)
{
fillBuffers(penaltyParams.presencePenalty, DefaultDecodingParams::getPresencePenalty(), mPresencePenalty,
mPresencePenaltyDevice, batchSlotsHost, getLimitsPenalty(DecodingPenaltyType::Presence),
"presence penalty");
}
if (useFrequencyPenalty)
{
fillBuffers(penaltyParams.frequencyPenalty, DefaultDecodingParams::getFrequencyPenalty(), mFrequencyPenalty,
mFrequencyPenaltyDevice, batchSlotsHost, getLimitsPenalty(DecodingPenaltyType::Frequency),
"frequency penalty");
}
if (useMinLength)
{
fillBuffers(penaltyParams.minLength, DefaultDecodingParams::getMinLength(), mMinLength, mMinLengthDevice,
batchSlotsHost, getLimitsPenalty(DecodingPenaltyType::MinLength), "min length");
}
// FIXME(nkorobov): once of the requests has some penalty, we will always have to compute it.
// To avoid that need scan through all active requests for each iteration.
mUseTemperature |= useTemperature;
mUseRepetitionPenalty |= useRepetitionPenalty;
mUsePresencePenalty |= usePresencePenalty;
mUseFrequencyPenalty |= useFrequencyPenalty;
mUseMinLength |= useMinLength;
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void PenaltyLayer<T>::forward(
std::shared_ptr<BaseOutputParams> baseOutputs, std::shared_ptr<BaseInputParams> baseInputs)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto outputs = std::dynamic_pointer_cast<DynamicDecodeOutputParams>(baseOutputs);
auto params = std::dynamic_pointer_cast<DynamicDecodeInputParams>(baseInputs);
SizeType32 batchSize{0};
SizeType32 beamWidth{0};
SizeType32 vocabSize{0};
if (params->logits)
{
auto const& logitsShape = params->logits->shape;
TLLM_CHECK(logitsShape.size() == 3 || logitsShape.size() == 4);
batchSize = logitsShape[0];
auto const idxOffset = logitsShape.size() - 3;
beamWidth = logitsShape[idxOffset + 1];
vocabSize = logitsShape[idxOffset + 2];
}
else
{
TLLM_CHECK(params->logits_vec->size());
auto const& logitsShape = params->logits_vec.value()[0].shape;
TLLM_CHECK(logitsShape.size() == 3 || logitsShape.size() == 4);
auto const idxOffset = logitsShape.size() - 3;
batchSize = params->logits_vec->size();
beamWidth = logitsShape[idxOffset + 1];
vocabSize = logitsShape[idxOffset + 2];
}
auto const maxSeqLen = outputs->output_ids.shape[outputs->output_ids.shape.size() - 1];
auto batchSlots = params->batch_slots ? params->batch_slots->template getPtr<SizeType32 const>() : nullptr;
std::vector<SizeType32> batchSlotsVec(batchSize);
std::iota(batchSlotsVec.begin(), batchSlotsVec.end(), 0);
auto batchSlotsHost
= params->batch_slots ? params->batch_slots->template getPtr<SizeType32 const>() : batchSlotsVec.data();
if (!mLogitsPtrsHost->data())
{
mLogitsPtrsHost = runtime::BufferManager::pinnedPool(
ITensor::makeShape(
{static_cast<int32_t>(maxSeqLen), static_cast<int32_t>(mDecoderDomain.getMaxBatchSize())}),
runtime::TRTDataType<T*>::value);
mRuntimeMaxSeqLen = maxSeqLen;
}
mCyclicStep = mCyclicStep % mRuntimeMaxSeqLen;
auto logitsPtrsHost = ITensor::slice(mLogitsPtrsHost, mCyclicStep, 1);
auto logitsPtrsHostData = reinterpret_cast<T const**>(runtime::bufferCast<int64_t>(*logitsPtrsHost));
for (SizeType32 bi = 0; bi < batchSize; bi++)
{
if (params->logits_vec)
{
TLLM_CHECK_WITH_INFO(params->logits_vec->size() == batchSize,
"Logits vector size (%lu) is not equal to the batchSize (%d)", params->logits_vec->size(), batchSize);
logitsPtrsHostData[bi] = params->logits_vec.value()[bi].template getPtr<T>();
}
else
{
logitsPtrsHostData[bi]
= params->logits->template getPtrWithOffset<T>(bi * beamWidth * mDecoderDomain.getVocabSizePadded());
}
}
SizeType32 const* inputLengths = nullptr;
if (params->input_lengths)
{
auto& input_lengths = params->input_lengths.value();
inputLengths = input_lengths.template getPtr<SizeType32 const>();
}
auto* embeddingBias = params->embedding_bias ? params->embedding_bias->template getPtr<T const>() : nullptr;
#define GET_PENALTIES(capital_name, type) \
(mUse##capital_name \
&& !allOfBatchSlots( \
batchSlotsHost, m##capital_name.data(), batchSize, DefaultDecodingParams::get##capital_name())) \
? m##capital_name##Device \
: nullptr;
auto* temperatures = GET_PENALTIES(Temperature, float);
auto* repetitionPenalties = GET_PENALTIES(RepetitionPenalty, float);
auto* presencePenalties = GET_PENALTIES(PresencePenalty, float);
auto* frequencyPenalties = GET_PENALTIES(FrequencyPenalty, float);
auto* minLengths = GET_PENALTIES(MinLength, SizeType32);
#undef GET_PENALTIES
auto const tokensPerStep = params->medusaInputs
? params->medusaInputs->medusaCurTokensPerStep.template getPtr<SizeType32 const>()
: nullptr;
InvokeBatchApplyPenaltyParams<T> penaltyParams{reinterpret_cast<T const* const*>(logitsPtrsHostData),
mRuntimeLogitsDevice, embeddingBias, mPenaltyWorkspaceDevice, mPenaltyWorkspacePrevDevice, temperatures,
repetitionPenalties, presencePenalties, frequencyPenalties,
(mUseRepetitionPenalty || mUsePresencePenalty || mUseFrequencyPenalty), batchSize,
static_cast<SizeType32>(beamWidth), static_cast<SizeType32>(maxSeqLen), mDecoderDomain.getVocabSize(),
mDecoderDomain.getVocabSizePadded(), outputs->output_ids_ptr.template getPtr<TokenIdType const*>(),
outputs->parent_ids_ptr.template getPtr<SizeType32 const*>(), inputLengths,
outputs->sequence_length->template getPtr<SizeType32 const>(), minLengths,
params->end_ids.template getPtr<TokenIdType const>(), batchSlots, mDecoderDomain.getMaxTokensPerStep(),
tokensPerStep, mStream};
invokeBatchApplyPenalty(penaltyParams);
sync_check_cuda_error();
mCyclicStep += 1;
params->logits = Tensor(MEMORY_GPU, std::is_same_v<T, float> ? DataType::TYPE_FP32 : DataType::TYPE_FP16,
{static_cast<size_t>(batchSize), static_cast<size_t>(mDecoderDomain.getMaxTokensPerStep()),
static_cast<size_t>(beamWidth), static_cast<size_t>(mDecoderDomain.getVocabSizePadded())},
mRuntimeLogitsDevice);
if (mDecodingMode.isBeamSearch())
{
std::swap(mPenaltyWorkspaceDevice, mPenaltyWorkspacePrevDevice);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template class PenaltyLayer<float>;
template class PenaltyLayer<half>;
} // namespace layers
} // namespace tensorrt_llm