TensorRT-LLMs/cpp/tensorrt_llm/layers/stopCriteriaLayer.cpp
Kaiyu Xie bf0a5afc92
Update TensorRT-LLM (#1598)
* Update TensorRT-LLM
2024-05-14 16:43:41 +08:00

138 lines
5.5 KiB
C++

/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/layers/stopCriteriaLayer.h"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/kernels/stopCriteriaKernels.h"
#include <algorithm>
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::kernels;
using namespace tensorrt_llm::runtime;
namespace tensorrt_llm
{
namespace layers
{
template <typename T>
StopCriteriaLayer<T>::StopCriteriaLayer(DecodingMode const& mode, DecoderDomain const& decoderDomain,
cudaStream_t stream, std::shared_ptr<IAllocator> allocator)
: BaseLayer(decoderDomain, stream, std::move(allocator))
, mDecodingMode(mode)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void StopCriteriaLayer<T>::setup(SizeType32 batchSize, SizeType32 beamWidth, SizeType32 const* batchSlots,
std::shared_ptr<BaseSetupParams> setupParams)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void StopCriteriaLayer<T>::forward(
std::shared_ptr<BaseOutputParams> baseOutputs, std::shared_ptr<BaseInputParams> baseInputs)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto inputs = std::dynamic_pointer_cast<DynamicDecodeInputParams>(baseInputs);
auto outputs = std::dynamic_pointer_cast<DynamicDecodeOutputParams>(baseOutputs);
SizeType32 batchSize{0};
SizeType32 beamWidth{0};
SizeType32 vocabSize{0};
auto const maxSeqLen = outputs->output_ids.shape[outputs->output_ids.shape.size() - 1];
auto batchSlots = inputs->batch_slots ? inputs->batch_slots->template getPtr<SizeType32 const>() : nullptr;
if (inputs->logits)
{
auto const& logitsShape = inputs->logits->shape;
TLLM_CHECK(logitsShape.size() == 3 || logitsShape.size() == 4);
batchSize = logitsShape[0];
auto const idxOffset = logitsShape.size() - 3;
beamWidth = logitsShape[idxOffset + 1];
vocabSize = logitsShape[idxOffset + 2];
}
else
{
TLLM_CHECK(inputs->logits_vec->size());
auto const& logitsShape = inputs->logits_vec.value()[0].shape;
TLLM_CHECK(logitsShape.size() == 3 || logitsShape.size() == 4);
auto const idxOffset = logitsShape.size() - 3;
batchSize = inputs->logits_vec->size();
beamWidth = logitsShape[idxOffset + 1];
vocabSize = logitsShape[idxOffset + 2];
}
if (!mDecodingMode.isMedusa())
{
checkStopWordsStopCriteria(outputs, inputs, batchSlots, batchSize, beamWidth, maxSeqLen, mStream);
}
checkMaxLengthStopCriteria(outputs, inputs, batchSlots, batchSize, beamWidth, maxSeqLen, mStream);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void StopCriteriaLayer<T>::checkStopWordsStopCriteria(std::shared_ptr<DynamicDecodeOutputParams>& outputs,
std::shared_ptr<DynamicDecodeInputParams> const& inputs, SizeType32 const* batchSlots, SizeType32 batchSize,
SizeType32 beamWidth, SizeType32 maxSeqLen, cudaStream_t stream)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const maxStopWordsLength = inputs->max_stop_words_len;
if (maxStopWordsLength)
{
invokeStopWordsCriterion(outputs->output_ids_ptr.template getPtr<TokenIdType const*>(),
outputs->parent_ids_ptr.template getPtr<SizeType32 const*>(),
inputs->stop_words_ptr->template getPtr<TokenIdType const*>(),
reinterpret_cast<FinishedState*>(outputs->finished->template getPtr<FinishedState::UnderlyingType>()),
outputs->sequence_length->template getPtr<SizeType32>(), batchSlots,
inputs->stop_words_lengths->template getPtr<SizeType32 const>(), maxStopWordsLength, batchSize, beamWidth,
maxSeqLen, stream);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void StopCriteriaLayer<T>::checkMaxLengthStopCriteria(std::shared_ptr<DynamicDecodeOutputParams>& outputs,
std::shared_ptr<DynamicDecodeInputParams> const& inputs, SizeType32 const* batchSlots, SizeType32 batchSize,
SizeType32 beamWidth, SizeType32 maxSeqLen, cudaStream_t stream)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
if (inputs->sequence_limit_length)
{
invokeLengthCriterion(
reinterpret_cast<FinishedState*>(outputs->finished->template getPtr<FinishedState::UnderlyingType>()),
outputs->finished_sum ? outputs->finished_sum->template getPtr<SizeType32>() : nullptr,
inputs->sequence_limit_length->template getPtr<SizeType32 const>(),
outputs->sequence_length->template getPtr<SizeType32>(), batchSlots, batchSize, beamWidth, stream);
sync_check_cuda_error();
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template class StopCriteriaLayer<float>;
template class StopCriteriaLayer<half>;
} // namespace layers
} // namespace tensorrt_llm