TensorRT-LLMs/cpp/tensorrt_llm/runtime/loraManager.h
Kaiyu Xie bf0a5afc92
Update TensorRT-LLM (#1598)
* Update TensorRT-LLM
2024-05-14 16:43:41 +08:00

95 lines
3.9 KiB
C++

/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/common.h"
#include "tensorrt_llm/runtime/loraCache.h"
#include "tensorrt_llm/runtime/loraModule.h"
#include "tensorrt_llm/runtime/modelConfig.h"
#include "tensorrt_llm/runtime/worldConfig.h"
#include <unordered_map>
namespace tensorrt_llm::runtime
{
/**
* \brief Manages LoRA tensors.
* \details Handles formatting input tensors and populating trt engine params related to LoRA.
*/
class LoraManager
{
public:
using TensorPtr = ITensor::SharedPtr;
using ReqIdsVec = std::vector<uint64_t>;
using TensorMap = runtime::StringPtrMap<runtime::ITensor>;
using LoraWeightsTensorPtr = TensorPtr;
using LoraConfigTensorPtr = TensorPtr;
using LoraReqTensors = std::tuple<LoraWeightsTensorPtr, LoraConfigTensorPtr>;
using TaskIdType = std::int64_t;
using PeftValues = std::shared_ptr<std::vector<runtime::LoraCache::TaskLayerModuleConfig>> const;
using PeftTable = std::map<uint64_t, std::shared_ptr<std::vector<runtime::LoraCache::TaskLayerModuleConfig>>>;
explicit LoraManager() {}
/**
* \brief Sets up and configures LoraManager. Allocates and needed device / host memory
* \param[in] modelConfig: a ModelConfig.
* \param[in] worldConfig: a WorldConfig
* \param[in] manager: and BufferManager used to allocate memory
*/
void create(ModelConfig const& modelConfig);
/**
* \brief same as fillInputTensors but for an entire batch
*/
void fillInputTensors(TensorPtr weightsPtrs, TensorPtr adapterSizes, PeftTable const& peftTable,
ReqIdsVec const& reqIds, std::vector<SizeType32> const& reqBeamWidth, ModelConfig const& modelConfig,
WorldConfig const& worldConfig);
/**
* \brief fill batch input tensors for LoRA. This method fills on batch slot.
* \param[out] weightsPtrs: the tensor of pointers to lora weights to fill.
* (ie for `*_lora_weights_pointers_*` fields)
* \param[out] adapterSizes: the adapter sizes tensor to fill
* (ie for `*lora_low_rank_*` fields)
* \param[in] peftTable: reqId to LoraCache::Values
* \param[in] batchIdx: the request batch index
* \param[in] beamWidth: the request beam width
* \param[in] modelConfig: a ModelConfig
* \param[in] worldConfig: a WorldConfig
*/
void fillInputTensors(TensorPtr weightsPtrs, TensorPtr adapterSizes, PeftValues const peftValues,
SizeType32 batchIdx, SizeType32 beamWidth, ModelConfig const& modelConfig, WorldConfig const& worldConfig);
/**
* \brief fill tensor map for trt engine context
* \param[out] inputTensors: the tensor map to fill
* \param[in] weightsPtrs: tensor of weights pointers as filled in fillInputTensors
* \param[in] adapterSizes: tensor of adapter sizes as filled in fillInputTensors
* \param[in] modelConfig: a ModelConfig
* \param[in] worldConfig: a WorldConfig
*/
void insertInputTensors(TensorMap& inputTensors, TensorPtr weightsPtrs, TensorPtr adapterSizes,
ModelConfig const& modelConfig, WorldConfig const& worldConfig) const;
private:
std::unordered_map<SizeType32, LoraModule> mModuleIdToModule;
std::unordered_map<SizeType32, SizeType32> mModuleOffset;
};
} // namespace tensorrt_llm::runtime