mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-02-07 03:31:58 +08:00
Signed-off-by: Yuan Tong <13075180+tongyuantongyu@users.noreply.github.com> Co-authored-by: QI JUN <22017000+QiJune@users.noreply.github.com>
76 lines
2.5 KiB
Python
76 lines
2.5 KiB
Python
import os
|
|
import sys
|
|
import unittest
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from tensorrt_llm import LLM, SamplingParams
|
|
from tensorrt_llm.llmapi import (CudaGraphConfig, KvCacheConfig,
|
|
NGramDecodingConfig)
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from utils.llm_data import llm_models_root
|
|
|
|
|
|
# TODO: add disable_overlap_scheduler=False
|
|
@pytest.mark.parametrize(
|
|
"disable_overlap_scheduler,use_cuda_graph,attn_backend",
|
|
[[True, False, "TRTLLM"], [True, True, "TRTLLM"],
|
|
[True, False, "FLASHINFER"]])
|
|
@pytest.mark.high_cuda_memory
|
|
def test_llama_ngram(disable_overlap_scheduler: bool, use_cuda_graph: bool,
|
|
attn_backend: str):
|
|
total_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9
|
|
if total_mem_gb < 20:
|
|
pytest.skip("Not enough memory to load target model")
|
|
|
|
max_batch_size = 2
|
|
max_draft_len = 4
|
|
kv_cache_config = KvCacheConfig(enable_block_reuse=False, max_tokens=8192)
|
|
cuda_graph_config = CudaGraphConfig(
|
|
batch_sizes=[1]) if use_cuda_graph else None
|
|
|
|
llm_common_config = dict( \
|
|
model=llm_models_root() / "llama-3.1-model" /"Meta-Llama-3.1-8B",
|
|
backend='pytorch',
|
|
attn_backend=attn_backend,
|
|
disable_overlap_scheduler=disable_overlap_scheduler,
|
|
cuda_graph_config=cuda_graph_config,
|
|
max_batch_size=max_batch_size,
|
|
kv_cache_config=kv_cache_config,
|
|
max_num_tokens=2048,
|
|
)
|
|
|
|
spec_config = NGramDecodingConfig(
|
|
max_draft_len=max_draft_len,
|
|
max_matching_ngram_size=2,
|
|
is_keep_all=True,
|
|
is_use_oldest=True,
|
|
is_public_pool=True,
|
|
)
|
|
|
|
prompts = [
|
|
"The capital of France is",
|
|
"The president of the United States is",
|
|
]
|
|
sampling_params = SamplingParams(max_tokens=32, ignore_eos=True)
|
|
|
|
llm_spec = LLM(**llm_common_config, speculative_config=spec_config)
|
|
results_spec = llm_spec.generate(prompts, sampling_params)
|
|
generated_text_spec = [result.outputs[0].text for result in results_spec]
|
|
llm_spec.shutdown()
|
|
|
|
llm_ref = LLM(**llm_common_config)
|
|
results_ref = llm_ref.generate(prompts, sampling_params)
|
|
generated_text_ref = [result.outputs[0].text for result in results_ref]
|
|
llm_ref.shutdown()
|
|
|
|
for text_spec, text_ref in zip(generated_text_spec, generated_text_ref):
|
|
# The spec decode algorithm currently guarantees identical results
|
|
assert text_spec == text_ref
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|